检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常用参数 概述 本节介绍Spark使用过程中的常用配置项。以特性为基础划分子章节,以便用户快速搜索到相应的配置项。如果用户使用MRS集群,本节介绍的参数大部分已经适配好,用户无需再进行配置。少数需要用户根据实际场景配置的参数,请参见快速配置参数。 配置Stage失败重试次数 Spark
安装MRS 3.x及之后版本Flume客户端 操作场景 使用Flume搜集日志时,需要在日志主机上安装Flume客户端。用户可以创建一个新的ECS并安装Flume客户端。 本章节适用于MRS 3.x及之后版本。 前提条件 已创建包含Flume组件的集群。 日志主机需要与MRS集群在相同的
备份ClickHouse元数据 操作场景 为了确保ClickHouse集群中的元数据安全,或者集群用户需要对ClickHouse进行重大操作(如升级或迁移等)时,需要对ClickHouse集群的元数据进行备份,从而保证系统在出现异常或未达到预期结果时可以及时进行数据恢复,将对业务的影响降到最低
Spark常用配置参数 概述 本节介绍Spark使用过程中的常用配置项。以特性为基础划分子章节,以便用户快速搜索到相应的配置项。如果用户使用MRS集群,本节介绍的参数大部分已经适配好,用户无需再进行配置。少数需要用户根据实际场景配置的参数,请参见快速配置Spark参数。 配置Stage
编译并调测Flink应用 操作场景 在程序代码完成开发后,建议您上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Flink客户端的运行步骤是一样的。 基于YARN集群的Flink应用程序不支持在Windows环境下运行,只支持在Linux环境下运行
在Linux环境中调测ClickHouse应用(MRS 3.3.0及之后版本) ClickHouse应用程序也支持在Linux环境中运行。在程序代码完成开发后,您可以上传Jar包至准备好的Linux运行环境中运行。 前提条件 Linux环境已安装JDK,版本号需要和IntelliJ
使用ZooKeeper客户端 Zookeeper是一个开源的,高可靠的,分布式一致性协调服务。Zookeeper设计目标是用来解决那些复杂,易出错的分布式系统难以保证数据一致性的。不必开发专门的协同应用,十分适合高可用服务保持数据一致性。 背景信息 在使用客户端前,除主管理节点以外的客户端
准备本地应用开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通
在本地Windows环境中调测ClickHouse应用(MRS 3.3.0及之后版本) 编译并运行程序 在程序代码完成开发后,您可以在Windows环境中运行应用。本地和集群业务平面网络互通时,您可以直接在本地进行调测。 操作步骤 单击IDEA右边Maven窗口的“Reload All
在本地Windows环境中调测ClickHouse应用(MRS 3.3.0及之后版本) 编译并运行程序 在程序代码完成开发后,您可以在Windows环境中运行应用。本地和集群业务平面网络互通时,您可以直接在本地进行调测。 操作步骤 单击IDEA右边Maven窗口的“Reload All
通过Flume采集指定目录日志系统文件至HDFS 应用场景 Flume是一个分布式、可靠和高可用的海量日志聚合的系统。它能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。支持在系统中定制各类数据发送方,用于收集数据。同时,提供对数据进行简单处理
准备Spark本地应用开发环境 Spark2x可以使用Java/Scala/Python语言进行应用开发,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux
快速创建和使用HBase离线数据查询集群 操作场景 本入门提供从零开始创建HBase查询集群并通过集群客户端进行HBase表的创建与查询操作指导。 HBase集群使用Hadoop和HBase组件提供一个稳定可靠、性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景
ALM-12033 慢盘故障(2.x及以前版本) 告警解释 MRS 2.x及以前版本: 对于HDD盘,满足以下任意条件时触发告警: 系统每3秒执行一次iostat命令,在30秒内连续10周期svctm值超过1000ms。 系统每3秒执行一次iostat命令,在300秒内有超过60%
快速使用Hive进行数据分析 Hive是基于Hadoop的一个数据仓库工具,可将结构化的数据文件映射成一张数据库表,并提供类SQL的功能对数据进行分析处理,通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。 背景信息
Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:
编译并调测Flink应用 操作场景 在程序代码完成开发后,编译jar包并上传至Linux客户端环境中运行应用。使用Scala或Java语言开发的应用程序在Flink客户端的运行步骤是相同的。 基于YARN集群的Flink应用程序不支持在Windows环境下运行,只支持在Linux环境下运行
配置Flink应用安全认证 场景说明 在安全集群环境下,各个组件之间的相互通信不能够简单地互通,而需要在通信之前进行相互认证,以确保通信的安全性。用户在提交Flink应用程序时,需要与Yarn、HDFS等之间进行通信。那么提交Flink的应用程序中需要设置安全认证,确保Flink程序能够正常运行
快速创建和使用ClickHouse列式数据库集群 操作场景 本入门提供从零开始创建ClickHouse集群并通过集群客户端进行ClickHouse表的创建与查询操作指导。 ClickHouse是一款开源的面向联机分析处理的列式数据库,独立于Hadoop大数据体系,具有压缩率和极速查询性能
使用Hive加载HDFS数据并分析图书评分情况 应用场景 MRS离线处理集群,可对海量数据进行分析和处理,形成结果数据,供下一步数据应用使用。 离线处理对处理时间要求不高,但是所处理数据量较大,占用计算存储资源较多,通常通过Hive/SparkSQL引擎或者MapReduce/Spark2x