检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ow/entry/p/br {""}) (br]、Map<String,String>类型。对于数据预处理任务比较特殊的两个场景物体检测和图像分类,键“task_type”对应的值为“object_detection”或“image_classification”。 表6 WorkPath
enable buildkitd # 查看状态 systemctl status buildkitd 若buildkitd的服务运行状态如下图所示,则表示服务运行成功。使用Ctrl+C即可退出查看状态。 Step2 获取推理镜像 建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。
ndard功能使用相对自由,您可以根据实际需要选择其中的环节。下文介绍使用ModelArts平台,从准备数据到完成模型开发上线的全流程。 图1 Standard使用流程 表1 使用流程说明 流程 子任务 说明 详细指导 配置权限 配置ModelArts委托授权 ModelArts
MASTER_ADDR:主机IP地址。 GPUS: 每台机器npu卡数 PER_DEVICE_BATCH_SIZE:每张卡batch size 训练成功如下图所示。 图1 训练成功 父主题: MLLM多模态模型训练推理
导入的OBS路径或manifest路径。 导入manifest时,path必须精确到具体manifest文件。 导入为目录时,目前仅支持数据集类型为图片分类、物体检测、文本分类、声音分类。 import_type Integer 导入方式。可选值如下: 0:目录导入 1:按manifest文件导入
5-7b块。 exp_name:实验块,训练策略-序列长度所需参数配置。 样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加,样例截图如下: 步骤二:执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定
采取lora策略方法的目标模块,默认为all dataset 指令微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo,identity 【可选】 注册在dataset_info.json文件数据集名称。如选用自定义数据则需配置dataset_info
自定义镜像的启动命令规范 用户遵循ModelArts镜像的规范要求制作镜像,选择自己的镜像,并且通过指定代码目录(可选)和启动命令的方式来创建的训练作业。 图1 创建训练作业选择自定义方式 当使用完全自定义镜像创建训练作业时,“启动命令”必须在“/home/ma-user”目录下执行,否则训练作业可能会运行异常。
等待模型载入 执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于DevServer适配ModelLink
键操作、开发环境支持审计的关键操作列表、训练作业支持审计的关键操作列表、模型管理支持审计的关键操作列表、服务管理支持审计的关键操作列表。 图1 云审计服务 数据管理支持审计的关键操作列表 表1 数据管理支持审计的关键操作列表 操作名称 资源类型 事件名称 创建数据集 dataset
工具内部对于随机的控制,是通过设定统一的随机种子进行随机性固定的。但是由于硬件的差异,会导致同样的随机种子在不同硬件上生成的随机数不同。具体示例如下: 由上图可见,torch.randn在GPU和NPU上固定随机种子后,仍然生成不同的随机张量。 对于上述场景,用户需要将网络中的randn在CPU上
实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“gpuMemUsage”、“gpuUtil”、“memUsage”“npuMemUsage”、“npuUtil”、可以添加或取消对应参数的使用情况图。 操作三:鼠标悬浮在图片上的时间节点,可查看对应时间节点的占用率情况。
ning时,均需要替换为此处实际创建的组织名称。 单击右上角“登录指令”,获取登录访问指令。以root用户登录ECS环境,输入登录指令。 图1 在ECS中执行登录指令 登录SWR后,使用docker tag命令给上传镜像打标签。下面命令中的组织名称deep-learning,请替换为a
进行调优。 描述 模型的简要描述。 填写元模型来源及其相关参数。当“元模型来源”选择“从容器镜像中选择”时,其相关的参数配置请参见表2。 图1 从容器镜像中选择模型 表2 元模型来源参数说明 参数 说明 “容器镜像所在的路径” 单击从容器镜像中导入模型的镜像,其中,模型均为Ima
-* 说明:此处“.local/share/jupyter/kernels/sfs-new-env”为举例,请以用户实际的安装路径为准。 图1 安装路径回显 刷新JupyterLab页面,可以看到新的kernel。 重启Notebook后kernel需要重新注册。 克隆原有的虚拟环境到SFS盘
训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如下所示。 图1 GPU规格运行日志信息 图2 CPU规格运行日志信息 父主题: 制作自定义镜像用于训练模型
在创建训练作业时,“启动命令”输入为“env”,其他参数保持不变。 当训练作业执行完成后,在训练作业详情页面中查看“日志”。日志中即为所有的环境变量信息。 图1 查看日志 父主题: 管理模型训练作业
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
镜像。 您制作的自定义镜像需要上传至SWR服务。ModelArts开发环境、训练和创建模型使用的自定义镜像需要从SWR服务管理列表获取。 图1 获取镜像列表 对象存储服务 对象存储服务(Object Storage Service,OBS)是一个基于对象的海量存储服务,为客户提供
测试。 调用API 待推理服务的状态变为“运行中”时,可单击操作列的“调用”,复制对应的接口代码,在本地环境或云端的开发环境中进行接口。 图1 调用接口 当部署推理服务的“安全认证”选择了“AppCode认证”,则需要将复制的接口代码中headers中的X-Apig-AppCod