检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
sh增加如下环境变量开启高阶配置: 配置环境变量。 export USE_PFA_HIGH_PRECISION_MODE=1 # PFA算子(全量prefill阶段的flash-attention)是否使用高精度模式;默认值为1表示开启。针对Qwen2-7B模型和Qwen2-57b模型,必须开启此配置,否则精度
/home_host/work/pipeline cd /home_host/work/pipeline 将onnx pipeline依赖的图生图源码“pipeline_onnx_stable_diffusion_img2img.py”复制到该目录下,名称改为“pipeline_onnx
huaweicloud.com/home中,搜索pypi ,也可以查看“pip.conf”文件内容。 下载“torch*.whl ”文件。 在网站“https://download.pytorch.org/whl/torch_stable.html”搜索并下载如下whl文件。 torch-1
列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、婚姻状况、文化程度、是否有房贷和是否有个人贷款。 表1 数据源的具体字段及意义 字段名 含义 类型 描述 attr_1 年龄 Int 表示客户的年龄。 attr_2 职业 String
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
ckerfile文件,构建新的镜像,并上传至SWR中。 在构建镜像的过程中会下载完整的模型代码、执行环境,然后自动进行NPU适配,并将以上源码和环境打包至镜像中。 在ModelArts中创建训练作业如:SFT全参微调训练,执行代码包中例如:finetune/finetune_ds
huaweicloud.com/home中,搜索pypi ,也可以查看“pip.conf”文件内容。 下载“torch*.whl ”文件。 在网站“https://download.pytorch.org/whl/torch_stable.html”搜索并下载如下whl文件。 torch-1
key='df', mode='w') pd.read_hdf('obs://wolfros-net/hdftest.h5') 通过重写pandas源码API的方式,将该API改造成支持OBS路径的形式。 写h5到OBS = 写h5到本地缓存 + 上传本地缓存到OBS + 删除本地缓存 从OBS读h5
执行如下命令进入容器,并进入AutoAWQ目录下, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 kubectl exec -it {pod_name} bash conda create --name awq --clone PyTorch-2
如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。 说明: 高性能计算:主要是高速
ModelArts_Market publish_activity 报名实践 ModelArts_Market regist_activity 修改个人资料 ModelArts_Market update_user 日志 出于分析或审计等目的,用户可以开启ModelArts的日志记录功能。
ModelArts_Market publish_activity 报名实践 ModelArts_Market regist_activity 修改个人资料 ModelArts_Market update_user 资源管理支持审计的关键操作列表 表7 资源管理支持审计的关键操作列表 操作名称
“obs://test-modelarts/tensorflow/log/” 用于存储训练日志文件。 Step2 创建数据集并上传至OBS 使用网站https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz,下载“mnist
本章节介绍SD3模型的推理过程。使用官方提供的已经训练好的模型进行推理,输入prompt生成指定像素的图片。 使用如下命令登录huggingface,并输入个人账号的token: huggingface-cli login 执行如下命令运行推理脚本启动SD3服务: #配置环境变量 export P
Gallery下载的数据集。单击图标选择您的OBS桶下的任意一处目录,但不能与输出位置为同一目录。 单击“确定”,自动跳转至AI Gallery的个人中心“我的下载”页签。等待五分钟左右下载完成即可。 图2 下载数据集 订阅工作流 登录ModelArts管理控制台,左侧菜单栏选择“开发空
本章节介绍SD3模型的推理过程。使用官方提供的已经训练好的模型进行推理,输入prompt生成指定像素的图片。 使用如下命令登录huggingface,并输入个人账号的token: huggingface-cli login 执行如下命令运行推理脚本启动SD3服务: #配置环境变量 export P
空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 图1 下载详情 完成参数填写,单击“确定”,自动跳转至AI Gallery个人中心“我的下载”页签,单击按钮,查看下载进度,等待5分钟左右下载完成,单击展开下载详情,可以查看该数据集的“目标位置”。 步骤四:创建新版自动学习图像分类项目
空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 图1 下载详情 完成参数填写,单击“确定”,自动跳转至AI Gallery个人中心“我的下载”页签,单击按钮,查看下载进度,等待5分钟左右下载完成,单击展开下载详情,可以查看该数据集的“目标位置”。 步骤四:创建新版自动学习图像分类项目
提升推理吞吐量。 export USE_PFA_HIGH_PRECISION_MODE=1 # PFA算子(全量prefill阶段的flash-attention)是否使用高精度模式;默认值为1表示开启。针对Qwen2-7B模型和Qwen2-57b模型,必须开启此配置,否则精度