检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
<>=&"',长度为0-1024位。 表5 Worker 参数 是否必选 参数类型 描述 create_time 否 Long 创建时间。 description 否 String 标注成员描述,长度为0-256位,不能包含^!<>=&"'特殊字符。 email 否 String 标注成员邮箱。
modify_content 发布资产新版本 ModelArts_Market add_version 订阅资产 ModelArts_Market subscription_content 收藏资产 ModelArts_Market star_content 取消收藏资产 ModelArts_Market
权限配置 权限列表 为了便于理解权限相关内容,建议先阅读ModelArts权限管理基本概念。 表1 服务授权列表 待授权的服务 适用场景 ModelArts 授予子用户使用ModelArts服务的权限。 ModelArts CommonOperations没有任何专属资源池的创建
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
–json-key标志来选择用于训练的列。 { 'id': '1', 'url': 'https://simple.wikipedia.org/wiki/April', 'title': 'April', 'text': 'April is the
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif
配置。 目前仅支持SFT指令监督微调训练阶段。 代码目录 benchmark工具脚本存放在代码包AscendCloud-LLM-xxx.zip的LLM/LLaMAFactory/benchmark目录下,包含训练性能测试和训练精度测试脚本。 代码目录如下: benchmark ├──
8k:8192-lora、full-8k:8192-full】 --master_addr <master_addr>:主master节点IP,一般选rank0为主master。 --num_nodes <nodes>:训练节点总个数 --rank <rank>:节点ID 训练完
命令行输入框: sum(nt_npg{type="NT_NPU_CARD_LOSE"} !=2) by (cluster_name, node_ip,type) 图2 告警规则设置 告警条件:选择触发条件在1个监控周期内,如果平均值>=1达到连续1次时,产生重要告警。 告警通知(可选)
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
配置。 目前仅支持SFT指令监督微调训练阶段。 代码目录 benchmark工具脚本存放在代码包AscendCloud-LLM-xxx.zip的LLM/LLaMAFactory/benchmark目录下,包含训练性能测试和训练精度测试脚本。 代码目录如下: benchmark ├──
8k:8192-lora、full-8k:8192-full】 --master_addr <master_addr>:主master节点IP,一般选rank0为主master。 --num_nodes <nodes>:训练节点总个数 --rank <rank>:节点ID 训练完
import RandomResizedCrop, Compose, Normalize, ToTensor, RandomHorizontalFlip import numpy as np from transformers import AutoModelForImageClassification
数据集标注相关的配置信息 是 LabelTaskProperties title title信息,主要用于前端的名称展示 否 str description 数据集标注节点的描述信息 否 str policy 节点执行的policy 否 StepPolicy depend_steps 依赖的节点列表
模型文件大小超过5GB,需要配置“动态加载”。 “运行时依赖” 罗列选中模型对环境的依赖。例如依赖“tensorflow”,安装方式为“pip”,其版本必须为1.8.0及以上版本。 “模型说明” 为了帮助其他模型开发者更好的理解及使用您的模型,建议您提供模型的说明文档。单击“添加