检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
--top_p 0.9 \ --recompute 执行以下脚本,生成文本。 sh ./generate_text.sh 若回显信息如下,则表示生成文本完成。 图8 生成文本完成信息 查看模型生成的文本文件。 cat unconditional_samples.json 回显信息如下:
设置推理温度。 数值较高,输出结果更加随机。 数值较低,输出结果更加集中和确定。 1 核采样/top_p 设置推理核采样。调整输出文本的多样性,数值越大,生成文本的多样性就越高。 1 top_k 选择在模型的输出结果中选择概率最高的前K个结果。 20 在对话框中输入问题,查看返回结果。
@modelarts:start_index Integer 文本的起始位置,值从0开始,包括start_index所指的字符。 @modelarts:end_index Integer 文本的结束位置,但不包括end_index所指的字符。 文本三元组 { "source":"content://"Three
在右侧标签信息区域中对图片信息进行修改。 添加标签:在“标签名”右侧文本框中,选择已有标签或输入新的标签名,然后单击,为选中图片增加标签。 修改标签:在“选中文件标签”区域中,单击操作列的编辑图标,然后在文本框中输入正确的标签名,然后单击确定图标完成修改。 图5 编辑标签 删除
日志提示“root: XXX valid number is 0” 问题现象 日志提示“root: XXX valid number is 0”,表示训练集/验证集/测试集的有效样本量为0,例如: INFO: root: Train valid number is 0. INFO:
创建声音分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
创建图像分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏选择“开发空间 > 自动学习”,进入自动学习页面。
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
work_path=work_path) 示例五:根据标注类型创建文本三元组数据集 dataset_name = "dataset-text-triplet" dataset_type = 102 # 数据集标注类型,102表示文本三元组标注类型 data_sources = dict()
包含该标签的样本数量。 type Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表4 LabelAttribute
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接
创建物体检测项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
由于在APIG的Java SDK中,“request.setBody()”只支持String类型,所以只支持输入为文本格式的预测请求。如果输入的是文件格式,需要先进行base64编码转换成文本。 输入为文件格式 此处以json格式为例介绍读取本地预测文件并进行base64编码的请求体,请求体示例如下:
moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids input_ids是user_ids和assistant_ids的拼接