检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN) 并行参数设置 micro batch size (MBS) 规格与节点数 1 llama2 llama2-7b
点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN) 并行参数设置 micro batch size (MBS) 规格与节点数 1 llama2 llama2-7b
file:存放在本地的云上开发环境私钥文件,即在创建开发环境实例时创建并保存的密钥对文件。 单击将连接重命名,可以自定义一个便于识别的名字,单击OK。 配置完成后,单击Test Connection测试连通性。 选择Yes,显示Successfully connected表示网络可以连通,单击OK。 在最下方再单击OK保存配置。
导入deepspeed_npu和torch_npu。 import deepspeed_npu import torch_npu # 导入一键迁移接口。 from torch_npu.contrib import transfer_to_npu 图1 自动迁移适配 单卡方式训练 单卡执行脚本如下:
acceptSamples 给样本添加标签 dataset updateSamples 发送邮件给团队标注任务的成员 dataset sendEmails 接口人启动团队标注任务 dataset startWorkforceTask 更新团队标注任务 dataset updateWorkforceTask
acceptSamples 给样本添加标签 dataset updateSamples 发送邮件给团队标注任务的成员 dataset sendEmails 接口人启动团队标注任务 dataset startWorkforceTask 更新团队标注任务 dataset updateWorkforceTask
stom),显示引擎包地址。 运行环境 如果元模型来源于训练作业/对象存储服务(AI引擎为预置引擎),显示元模型依赖的运行环境。 容器调用接口 如果元模型来源于对象存储服务(AI引擎为Custom)/容器镜像,显示模型启动的协议和端口号。 推理代码 如果元模型来源于训练作业且为旧版训练作业,则显示推理代码的存放路径。
Workflow(name="data-select-demo", desc="this is a test workflow", steps=[condition_step, job_step_1
对于偶现且劣化现象出现的step数不固定的场景,则需要确保能采集到该不固定的step。 profiling数据采集请参考Ascend PyTorch Profiler接口采集。文档中包含torch_npu.profiler.profile、dynamic_profile等多种采集方式。任意torch_npu版本均支持torch_npu
”指定了构建的上下文是当前目录,根据实际填写。 docker build -t swr.cn-north-4.myhuaweicloud.com/sdk-test/pytorch_1_8:v1 -f Dockerfile . 图5 构建成功 注册新镜像 调试完成后,将新镜像注册到ModelArts
发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板 ├── ... ├── eval_test.py # 启动脚本,建立线程池发送请求,并汇总结果 ├── service_predict.py # 发送请求
-swr notebook_test/my_image:0.0.1 其中“.ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile”为Dockerfile文件所在路径,“notebook_test/my_image:0.0.1”为构建的新镜像的SWR路径。
通过ModelArts的Notebook,在JupyterLab中使用OBS上传下载数据。 建议配置。 开发环境监控功能 AOM aom:alarm:put 调用AOM的接口,获取Notebook相关的监控数据和事件,展示在ModelArts的Notebook中。 建议配置。 VPC接入 VPC vpc:ports:create
在AOM控制台查看ModelArts所有监控指标 ModelArts会定期收集资源池中各节点的关键资源(GPU、NPU、CPU、Memory等)的使用情况以及开发环境、训练作业、推理服务的关键资源的使用情况,并上报到AOM,用户可直接在AOM上查看。 登录AOM控制台查看监控指标
更多选项 内容审核 选择是否打开内容审核,默认启用。 开关打开(默认打开),内容审核可以阻止模型推理中的输入输出中出现不合规的内容,但可能会对接口性能产生较大影响。 开关关闭,停用内容审核服务,将不会审核模型推理中的输入输出,模型服务可能会有违规风险,请谨慎关闭。 关闭“内容审核”开
obs_url String 训练作业日志保存的OBS地址。 host_path String 训练作业日志保存的宿主机的路径。 表56 调用训练接口失败响应参数 参数 类型 描述 error_msg String 调用失败时的错误信息,调用成功时无此字段。 error_code String
图中蓝色loss_0是NPU迭代曲线,黄色loss_1是GPU的迭代曲线。 问题定位解决 使用ptdbg_ascend工具dump全网数据,dump接口设置方法具体参考PyTorch精度工具。dump完成后compare GPU和NPU结果进行分析。 dropout算子引入了随机性偏差,如下图:
第三方推理框架迁移到ModelArts Standard推理自定义引擎 背景说明 ModelArts支持第三方的推理框架在ModelArts上部署,本文以TFServing框架、Triton框架为例,介绍如何迁移到推理自定义引擎。 TensorFlow Serving是一个灵活、
${container_name} bash python3 launch.py --port 8183 --skip-torch-cuda-test --enable-insecure-extension-access --listen --log-startup --disable-safe-unpickle
复制单个大文件5G以上时可采用: from moxing.framework.file import file_io 查看当前moxing调用的接口版本:file_io._LARGE_FILE_METHOD,如果输出值为1则为V1版本,如果输出值为2,则为V2版本。 V1版本修改:file_io