检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4
发布和管理AI Gallery数据集 托管数据集到AI Gallery 发布数据集到AI Gallery 管理AI Gallery数据集 父主题: AI Gallery(新版)
--load-dir:加载转换模型权重路径。 --save-dir : 权重转换完成之后保存路径。 --tokenizer-model : tokenizer路径。 输出转换后权重文件保存路径: 权重转换完成后,在/home/ma-user/work/llm_train/pro
在Workflow中使用大数据能力(DLI/MRS) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MR
上传数据和算法至OBS(首次使用时需要) 前提条件 已经在OBS上创建好并行文件系统,请参见创建并行文件系统。 已经在obsutil安装和配置,请参见obsutils安装和配置。 准备数据 单击下载动物数据集至本地,并解压。 通过obsutil将数据集上传至OBS桶中。 ./obsutil
示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4
的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增量训练节约了重新训练中需要消耗大量算力、时间以及经济成本。 增量训练特别适用于以下情况: 数据流更新:在实际应用中,数据可能会持
eval_datasets:评测数据集和评测方法,比如ceval_gen、mmlu_gen,不同数据集可以详见opencompass下面data目录。 model_name:评测模型名称,不需要与启动服务时的模型参数保持一致。 benchmark_type:作为一个保存log结果中的一个变量名,默认选eval。
Manifest管理 Manifest管理概述 解析Manifest文件 创建和保存Manifest文件 解析Pascal VOC文件 创建和保存Pascal VOC文件 父主题: 数据管理
--load-dir:加载转换模型权重路径。 --save-dir : 权重转换完成之后保存路径。 --tokenizer-model : tokenizer路径。 输出转换后权重文件保存路径: 权重转换完成后,在 /home/ma-user/ws/processed_for_
日志提示“No space left on device” 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未
页面中。 一旦标注数据完成验收,团队成员无法再修改标注信息,只有数据集创建者可修改。 表1 完成验收的参数设置 参数 说明 对已标注数据修改 不覆盖:针对同一个数据,不使用当前团队标注的结果覆盖已有数据。 覆盖:针对同一个数据,使用当前团队标注的结果覆盖已有数据。覆盖后无法恢复,请谨慎操作。
步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细
示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4
(可选,如果选择使用humaneval数据集) pip install -e . # 可选,如果选择使用humaneval数据集 pip install huggingface-hub==0.25.1 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否
步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细
步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细
--quan-path:转换后权重保存路径。 --group-size:量化group size参数,指定-1时为per-channel权重量化,W4A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐
选择,示例如下。 输入数据集变量:是否使用已处理好数据集; 是,设置以下变量 USER_PROCESSED_DATA_DIR:已处理好数据路径目录 否,使用原始数据集,设置以下变量 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入原始数据集路径。 输入权重词表变
步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 步骤二 修改训练超参配置