检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式的区别如下: 包年/包月计费模式:包年/包月的计费模式是一种预付费方式,按订单的购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
平台提供了知识库功能来管理和存储数据,支持为应用提供自定义数据,并与之进行互动。 知识库支持导入以下格式的本地文档: 文本文档数据。支持上传常见文本格式,包括:txt、doc、docx、pdf、ppt、pptx格式。 表格数据。支持上传常见的表格文件格式,便于管理和分析结构化数据,包括:xlsx、xls、csv格式。
当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency> <groupId>com.huaweicloud.sdk</groupId>
保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。 数据工程包含的具体功能如下: 数据获取:数据获取是数据工程的第一步,支持将不同来源和格式的数据导入平台。 支持的接入方式:通过OBS服务导入数据。
资源、训练资源、推理资源,支持模型资产的包年/包月订购、资源的包年/包月和按需计费订购。 模型资产:模型资产可用于模型开发、应用开发等模块。当前支持订购NLP大模型、CV大模型、预测大模型、科学计算大模型和专业大模型的模型资产。 数据资源:数据通算单元适用于数据加工,用于正则类算
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户
盘古大模型空间资产介绍 在ModelArts Studio大模型开发平台的空间资产中,包括数据和模型两类资产。这些资产为用户提供了集中管理和高效操作的基础,便于用户实现统一查看和操作管理。 数据资产:用户已发布的数据集将作为数据资产存放在空间资产中。用户可以查看数据集的详细信息,
盘古大模型分为模型订阅、数据资源、训练资源和推理资源四个收费项。 模型订阅按照订阅时长预付费,提供1个月到1年供客户选择,自支付完成开始计费。 数据智算单元、数据通算单元按单元使用数量和时长后付费,时长精确到秒,数据托管单元按订购数量和时长预付费,提供1个月到1年供客户选择。 模
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS
计费FAQ 包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 发布数据集 评估数据集 平台预置了多种数据类型的基础评估标准,包括NLP、视频和图片数据,用户可根据需求选择预置标准或自定义评估标
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例
意义: 确保数据质量和适配性 数据发布功能通过数据评估和配比,确保发布的数据集满足大模型训练的高标准。这不仅包括数据规模的要求,还涵盖了数据质量、平衡性和代表性的保证,避免数据不均衡或不具备足够多样性的情况,进而提高模型的准确性和鲁棒性。 提高数据的多样性和代表性 通过合理的数据
在默认格式中,context和target是键值对。示例如下: {"context": "你好,请介绍自己", "target": "我是盘古大模型"} 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 在盘古格式中,context和target是键值对。与默认格
入的规范。 检查输入的prompt格式,消息的角色和内容。 101096 意图识别调用大模型失败。 检查消息的格式,内容以及大模型服务是否正常。 101095 意图识别用户query输入/引用解析失败。 检查用户query格式和内容。 101094 意图识别prompt模板构建失败。
提示词写作常用方法论 提示词工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧
视频类清洗算子能力清单 数据清洗算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的清洗操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
发布提示词 通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。