检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,
需要保障在图片中人眼能清晰辨别目标。 图片分辨率大于640x640 px,关于拍摄角度、距离、分辨率等画面拍摄条件,需要保证训练集图片和测试部署时的图片保持一致。 构建CV大模型数据集流程 在ModelArts Studio大模型开发平台中,使用数据工程构建盘古CV大模型数据集流程见表2。
数据工程 ModelArts Studio开发平台提供了全面的数据工程功能。该模块涵盖数据获取、加工、标注、评估和发布等关键环节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
使用数据工程构建预测大模型数据集 预测大模型支持接入的数据集类型 盘古预测大模型仅支持接入预测类数据集,不同模型所需数据见表1,该数据集格式要求请参见预测类数据集格式要求。 表1 预测大模型与数据集类型对应关系 基模型 模型分类 数据集内容 文件格式 预测大模型 时序预测模型 时序数据
加工数据集 数据集加工场景介绍 数据集清洗算子介绍 加工文本类数据集 加工图片类数据集 加工视频类数据集 加工气象类数据集 管理加工后的数据集 父主题: 使用数据工程构建数据集
管理知识库 Agent开发平台支持对知识库执行获取知识库ID、删除、命中测试操作。 新增、删除知识库中知识文档 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 进入“工作台
数据工程介绍 数据工程介绍 数据工程是ModelArts Studio大模型开发平台(下文简称“平台”)为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率,为大模型开发提供坚实的数据基础。
上角“继续上传”,上传本地文件。 知识库命中测试 平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最终输出与查询相关的信息,并根据匹配的程度进行排序。 知识库命中测试步骤如下: 登录ModelArts Studi
目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命名的方式指定数据是训练数据集、验证数据集还是测试数据集。训练数据名称需包含train字样,如train01.csv;验证数据名称需包含eval字样;测试数据名称需包含test字样。文件的命名不能同时包含train、eval和test中的两个或三个。
使用数据工程构建数据集 数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 发布数据集 数据工程常见报错与解决方案
训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。
使用数据工程构建科学计算大模型数据集 科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 训练科学计算大模型训练数据要求所需数据量 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求
使用数据工程构建NLP大模型数据集 NLP大模型支持接入的数据集类型 盘古NLP大模型仅支持接入文本类数据集,数据集文件内容包括:预训练文本、单轮问答、多轮问答、带人设单轮问答、带人设多轮问答等,不同训练方式所需要使用的数据见表1,该数据集格式要求请参见文本类数据集格式要求。 表1
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。
数据源样本为avi、mp4格式,标注文件为json格式。必须包含两个及以上后缀名字为avi或者mp4的文件。 每个视频时长要大于128s,FPS>=10,且测试集训练集都要有视频。 支持视频的格式包括常见的mp4/avi格式文件,每个视频时长要大于128s,FPS>=10,用annotation.json对文件进行标注。
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数
管理盘古数据资产 数据资产介绍 数据资产是指在平台中被纳入管理、存储并可供使用的数据集。 数据资产包含以下两种形式: 用户自行发布的数据集。 用户可以通过“数据工程 > 数据发布 > 数据流通”功能将数据集发布为数据资产。发布的数据集支持查看详细信息、编辑、删除以及发布至AI Gallery等操作。
导入数据至盘古平台 数据集是一组用于处理和分析的相关数据样本。 用户将存储在OBS服务中的数据导入至ModelArts Studio大模型开发平台后,将生成“原始数据集”被平台统一管理,用于后续加工或发布操作。 创建导入任务 创建导入任务前,请先按照数据集格式要求提前准备数据。
多场景测试:对多种不同场景下的prompt进行测试,确保在各种情境下系统能够有效响应: 不同语言对的翻译:如图3,针对不同的语言对(如中文到法语、俄语到西班牙语),评估翻译效果是否稳定。 图3 多场景测试-不同语言对 复杂对话场景:如图4,当用户在对话中频繁切换意图时,测试意图识