检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。 上
新建训练数据集后,勾选当前应用开发所需的训练数据集。 由于该工作流所需数据集需标注10%数据量用于测试,其余90%无需标注。针对已上传的数据集,您可以手动添加或修改标签。 单击数据集操作列的“标注测试图片”,进入数据集概览页单击右上角的“开始标注”,在“数据标注”页面手动标注数据。 导入数据集
在“应用监控”页面,您可以针对“运行中”的应用使用在线测试功能,在“上传测试图片”右侧单击“选择文件”,上传本地的测试图片,下侧会显示预测结果。 查看历史版本 在“应用监控”页面,您可以查看当前应用所部署的不同版本信息,包括“更新时间”、“更新状态”、“对应应用版本”、“分流(%)”、“计算节点规格”和“计算节点个数”。
在“应用监控”页面,您可以针对“运行中”的应用使用在线测试功能,在“请输入文本”下方输入测试文本,然后单击“测试”,右侧会显示预测结果。 图3 在线测试 查看历史版本 在“应用监控”页面,您可以查看当前应用所部署的不同版本信息,包括“更新时间”、“更新状态”、“对应应用版本”、“分流(%)”、“计算节点规格”和“计算节点个数”。
本地上传图片 图2 评估模板 在“应用开发>评估”页面,默认进入“本地上传”页签。 单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 测试图片上传成功后,右侧会显示识别结果。 您可以核对识别结果是否正确。 如果不正确,可单击“创建新模板”,重新创
为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。 为了准确率,建议数据集中标注数据占总数据量的10%,用于测试模型,其余90%无需标注。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的
在“模型评估”页面,您可以查看测试集中数据模型预测结果。 “详细评估”左侧显示标注标签,右侧显示第二相交并比指标较低的图片。 图2 详细评估 模拟在线测试 在“模型评估”页面,您可以在线测试当前模型,即通过上传测试图片,查看当前模型的预测结果。 待服务构建完成,单击“上传图片”,上传本地一张测试图片,即可查看当前模型版本的预测结果。
练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 模型评估 模型评估 “模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的
Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,并训练模型,详情请见训练模型。 评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比 图2 评估参数对比
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别刹车盘的类型,也可以直接调用对应的API和SDK识别。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别云状的类型,也可以直接调用对应的API和SDK识别。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于识别图像的类别,也可以直接调用对应的API和SDK识别。
图片,然后对多个模板图片进行文字识别和结构化提取。 训练分类器 评估应用 通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于检测和识别车牌,也可以直接调用对应的API和SDK识别。
选择“所属行业”和“选择工作流”。 图3 工作流配置 资源配置 图4 资源配置 分别选择“数据处理资源”、“模型训练资源”、“测试资源部署”,即用于数据处理、模型训练和在线测试的资源池和资源类型。 资源池可选“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。
选择数据 在使用HiLens安全帽检测工作流训练模型时,您需要新建训练数据集,后续训练模型操作是基于您选择的训练数据集。 前提条件 已在ModelArts Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,详情请见新建可训练技能。 已准备数据并上传至OBS,详情请见准备数据。
选择数据 在使用热轧钢板表面缺陷检测工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于热轧钢板表面缺陷检测工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入数据集 前提条件 已在视
准备数据 在使用热轧钢板表面缺陷检测工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计钢板标签 首先需要考虑好热轧钢板表面缺陷的类型标签,即能识别出热轧钢板表面的缺陷类型。例如以“scratch”、“scar”、“pit”等作为热轧钢板表面缺陷的类型。
准备数据 在使用多语种文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计分类标签 首先需要确定好文本分类的标签,即希望识别出文本的一种结果。例如分类用户对商品的评论,则可以以“positive”、“neutral”、“negative”等作为