检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
内置评测指标简介 评测算法从驾驶安全性,智能性,合规性,舒适性等维度对自动驾驶系统进行全面评价。评测指标的pass/fail标准比较复杂,需要对一些评测函数的细节进行介绍。
一般情况下,训练与评测定义为同一个引擎,主要包括算法或评测脚本运行所需要的基本依赖环境。用户可使用命令行模式或Dockerfile模式进行构建。
提供车辆动力学仿真、自动驾驶算法仿真、传感器仿真、交通流仿真等功能,实现对自动驾驶算法的大规模仿真测试,持续提升自动驾驶算法的安全性。
自定义场景挖掘算法对topic无特殊要求,由客户算法自行定义。 场景展示 标签管理 父主题: 数据资产
图1 信号查看器 单击“载入数据”,可根据“任务名称”、“算法名称”、“算法版本”搜索任务,选择对比分析数据。 图2 选择对比分析数据 单击“载入”后,左侧会出现选择的数据。 图3 载入数据 在右侧选择“添加框图”,右侧出现空白的框图。
基于同一个任务配置运行多次仿真任务,可以更改“算法版本”。 不支持修改任务配置和场景库、测试套件的关联关系,但是可以继续往场景库以及套件中增删场景或用例。新运行的任务,则会读取当下场景库或用例中的场景数据。如果清空里面的有效场景或用例,会导致任务运行失败。
lead_vehicle和主车Ego在主道的同一车道上分别以35kph和Ego_InitSpeed_Ve0的初始速度一前一后行驶,Ego设定了目标在匝道上的目标点Target_position,仿真开始后激活Ego控制器(控制器会影响Ego去往Target_position的寻路算法
算法pb下载:任务运行成功后,用户可以下载算法pb文件。算法pb文件包含感知、规控、定位等算法信息。 信号查看器:在已完成的任务中,在任务详情页,单击操作栏中的“信号查看器”,页面跳转至信号查看器页面,以图表的形式展现该场景自动驾驶过程中的关键数据的变化。
标注管理 标注管理主要提供可视化的标注物管理,支持自定义创建多种标注物的形状和颜色,可用于预标注和人工标注指定物体,或自定义算法模型中关联特定标注物。如果在创建标注模板时,没有找到满足当前所需的标注物,则可以通过标注物管理添加新标注物。
主车Ego在主道行驶,初始速度为Ego_InitSpeed_Ve0,Ego设定了目标在主道右侧2车道上的目标点Target_position,仿真开始后激活Ego控制器(控制器会影响Ego去往Target_position的寻路算法,但目前仿真器B尚不支持寻路动作acquire_position
标注流程 训练模型 训练算法 创建训练作业前需要先选择算法,可以使用Octopus内置的算法,也可以自定义算法。 训练算法 模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度,用于衡量一个模型及其标注结果的可信度。
自定义实时评测算法的实现有如下几个步骤: 代码内实现与仿真器的通信,实时接收仿真器的帧数据,也可同时接收仿真器和AD算法的数据。
模型文件基本要求 模型文件通常包括模型图和模型权重文件,具体内容视用户算法决定,无其他要求。
lead_vehicle和主车Ego在主道上分别以40kph和Ego_InitSpeed_Ve0的初始速度一前一后行驶,Ego设定了目标在主道右2车道上的目标点Target_position,同时激活Ego控制器(控制器会影响Ego去往Target_position的寻路算法,但目前仿真器
优先级:设定任务的优先级,数值取[-50,50]的整数,数字越大,优先级越高。 环境变量:配置算子的环境变量。允许添加的环境变量个数不超过10个。 Key:只能由英文、数字、和特殊符号(,-_)组成,且需要以字母开头 。长度不超过64个字符。
软硬件加速 感知算法训练和仿真需要使用大量算力资源,Octopus依托华为自研软硬件能力提供的强大算力支持,满足每天百万公里仿真测试和算法训练。
用户在任务配置模块,可使用自研仿真算法,根据Octopus自研仿真评测体系,从行车安全、驾驶行为、乘员舒适性等多维度测评在多种条件下的仿真场景中控制算法控制质量。在仿真任务模块,可将仿真任务运行中关键指标变化绘制成图表,直观形象。
优先级:设定在任务队列中的优先级,数值取[-50, 50]的整数,数字越大,优先级越高。 环境变量:通过注入环境变量至容器中,用户可以快速获取业务相关常量。 Key:只能由英文、数字、和特殊符号(,-_)组成,且需要以字母开头 。长度不超过64个字符。
用户可上传符合Octopus平台规范的训练算法,将成熟的算法创建训练任务生成训练模型。此外,训练服务提供多种模型评测指标,从多维度衡量模型质量。让自动驾驶研发更便捷。训练服务的开发流程如下: 训练服务操作引导如下: 算法管理:负责管理用户上传的符合平台规范的算法。
保存训练算法文件 octopus saveTrainAlgorithmFile 打包训练算法 octopus packageTrainAlgorithm 更新训练算法打包结果 octopus updateTrainAlgorithmPackagingResult 下载算法压缩包