检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
该路径在极速文件存储上存在。 开启AOM日志监控 - 开启后可收集可信计算节点日志,推荐开启。 对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。 节点密码 - 设置可信计算节点宿主机的登录密码。 确认密码 - 与“节点密码”保持一致即可。
hfl_type String fl作业类型枚举。TRAIN, EVALUATE hfl_platform_type String 联邦学习运行平台枚举值。LOCAL,MODEL_ARTS host_agent_id String 发起方agent id,最大32位,由字母和数字组成 host_agent_name
发起联邦预测 企业A单击“发起预测”按钮,选择己方和大数据厂商B的预测数据集,单击确定即可发起预测。 TICS服务会对两方的数据先进行样本对齐,并对双方共有的数据进行联邦预测,预测的结果会保存在企业A(作业发起方)的计算节点上。企业A可以通过obs服务或者登录到计算节点后台获取到对应路径的文件。
hfl_type 是 String fl作业类型枚举。TRAIN,EVALUATE。 hfl_platform_type 是 String 联邦学习运行平台枚举值。LOCAL,MODEL_ARTS host_agent_id 是 String 发起方agent id,最大长度32 host_agent_name
创建隐私求交作业 前提条件 参与计算的双方需要在其代理节点上创建好各自的数据集,并需要确保数据集含有非敏感的唯一标识字段。 创建作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 隐私求交”,打开隐私求交作业列表页面。 在隐私求交作业列表页面,单击“创建”。 图1
统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
TICS使用简介 可信智能计算服务TICS( Trusted Intelligence Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、
产品概述 可信智能计算服务TICS( Trusted Intelligent Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算
String fl作业类型枚举。1.TRAIN训练,2.EVALUATE评估 hfl_platform_type String 联邦学习运行平台枚举值。LOCAL,MODEL_ARTS learning_rate String 纵向联邦算法学习率 algorithm_type String
TICS使用流程简介 本文档是一个TICS入门教程,介绍了如何在TICS控制台完成端到端的全流程使用。 可信智能计算服务TICS( Trusted Intelligence Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数
计算节点API应用示例 本节通过curl 方式调用TICS API,端到端执行分析型作业为例,介绍使用TICS API的基本流程。 获取用户token 获取用户的token,因为在后续的请求中需要将token放到请求消息头中作为认证。 获取可信节点详情 获取调用后续接口参数信息,例如可信节点id。
筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练
String fl作业类型枚举。TRAIN(训练),EVALUATE(评估)。 hfl_platform_type 否 String 联邦学习运行平台枚举值。LOCAL(本地),MODEL_ARTS(modelarts) agent_id 是 String 作业发起可信计算节点id,最大32位,由字母和数字组成
场景描述 现有企业A和企业B达成了一项数据共享合作协议,企业B允许企业A根据用户id查询企业B的数据,辅助企业A的实时分析业务。而企业A不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用T
description String 作业描述 ext String 参数等额外信息 hfl_platform_type String 联邦学习运行平台枚举值。LOCAL本地 hfl_type String FL作业类型枚举。TRAIN训练,EVALUATE评估 is_single_predict
应用场景 政企信用联合风控 金融机构对于中小微企业的信用数据通常不足,央行征信数据覆盖率有限,不良企业多家骗贷事件屡有发生。金融机构与政府部门,如税务部门、市场监管部门、水电公司等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势:
基本概念 空间(League) 可信智能计算服务的逻辑概念,由组织方创建。空间绑定不同数据保护方式的聚合器,并邀请多方数据提供者参与,在空间内实现数据有限共享应用,提炼数据价值。 空间是联邦计算的载体。空间需要购买才能使用,在空间中可以管理合作成员,合作数据以及查看可信智能计算环境。执行联邦计算任务需要指定空间。
空间API 统计信息管理 空间管理 数据集管理 联邦分析作业管理 联邦学习作业管理 作业实例管理 审计日志管理 可信节点管理
阶段六:统计型作业的差分隐私保护 本示例作业,以统计各行业的“企业税收总和”与“用电量总和”,进行统计分析: Select industry, sum(tax_bal), sum(electric_bal) from LEAGUE_CREATOR.tax a join
常用概念 合作方、参与方: 空间成员,有权使用空间中的数据,或者将自有数据发布到空间,供其他合作方受限使用。 计算节点 部署在参与方侧,是可信智能计算与合作方侧数据的桥梁,保障数据按照合作方意愿受限使用。 计算节点是管理参与方数据的最小单位。部署计算节点时需要指定空间配置信息。在