检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在Ascend场景上,算子需要指定具体的shape信息,并且在
WebUI一般可以分为前端和后端实现两部分,后端的实现模式种类多样,并且依赖了多个的第三方库,当前在WebUI适配时,并没有特别好的方式。在对后端实现比较理解的情况下,建议针对具体的功能进行Diffusers模块的适配与替换,然后针对替换上去的Diffusers,对其pipeline进
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
原因分析 nvidia-modprobe是一个Linux工具,用于在系统中加载NVIDIA驱动程序及其相关的内核模块。在Linux系统上安装NVIDIA显卡驱动后,需要通过“nvidia-modprobe”命令来加载相应的内核模块,以便让显卡驱动正常工作。 通常情况下,在安装NVIDI
将Notebook的Conda环境迁移到SFS磁盘 本文介绍了如何将Notebook的Conda环境迁移到SFS磁盘上。这样重启Notebook实例后,Conda环境不会丢失。 步骤如下: 创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境
platform”报错,具体解决方法请参见2。 处理方法 安装第三方包 pip中存在的包,使用如下代码: import os os.system('pip install xxx') pip源中不存在的包,此处以“apex”为例,请您用如下方式将安装包上传到OBS桶中。 该样例已将安
yTorch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyTorch的动态图机制下,算子被CPU逐个下发到NPU上执行。一方面,理想情况下CPU侧算子下发会明显比NPU
所以迁移前需要用户先准备好自己的ONNX pipeline。下文以官方开源的图生图的Stable Diffusion v1.5的onnx pipeline代码为例进行说明。 进入容器环境,创建自己的工作目录。 由于在Snt9B裸金属服务器环境配置指南的配置环境步骤中,在启动容器时将物理机的home目
Server在日常操作与维护过程中涉及的高危操作,需要严格按照操作指导进行,否则可能会影响业务的正常运行。 高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。 中:对于可能导致安全风险及可靠性降低的高危操作。 低:高、中风险等级外的其他高危操作。 表1
进行定位分析。 多数场景下的问题可以通过日志报错信息直接定位。如果日志的信息不能定位问题,您可以通过设置环境变量调整日志等级,打印更多调试日志。 关于如何对MindSpore Lite遇到的问题进行定位与解决,请参见MindSpore Lite官网提供的问题定位指南。 父主题: 常见问题
场景介绍 本小节通过一个具体问题案例,介绍模型精度调优的过程。 如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在问题时,
基于advisor的昇腾训练性能自助调优指导 advisor调优总体步骤 创建诊断任务 查看诊断报告 父主题: GPU业务迁移至昇腾训练推理
逐个替换模型,检测有问题的模型 该方式主要是通过模型替换,先定位出具体哪个模型引入的误差,进一步诊断具体的模型中哪个算子或者操作导致效果问题,模型替换原理如下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。 图1 精度诊断流程
能异常。下表可帮助您定位异常出现的原因,风险操作包括但不限于以下内容。 高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。 中:对于可能导致安全风险及可靠性降低的高危操作。 低:高、中风险等级外的其他高危操作。 表1 操作及其对应风险
本文主要介绍如何在Lite Server上配置DCGM监控,用于监控Lite Server上的GPU资源。 DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 约束限制 仅适用于GPU资源监控。
Notebook的JupyterLab中提供了多种方式上传文件。 上传文件要求 对于大小不超过100MB的文件直接上传,并展示文件大小、上传进度及速度等详细信息。 对于大小超过100MB不超过50GB的文件可以使用OBS中转,系统先将文件上传OBS(对象桶或并行文件系统),然后从OB
MindStudio-Insight性能可视化工具使用指导 对于高阶的调优用户,可以使用可视化工具MindStudio Insight查看profiling数据详情并分析可优化点,其提供了丰富的调优分析手段,可视化呈现真实软硬件运行数据,多维度分析性能瓶颈点,支持百卡、千卡及以上规模的可视化集群性能分析,助力开发者天级完成性能调优。
分析,大量数据的下载耗时以及对本地大规格存储盘的要求容易导致分析受阻。为了能自动串联高性能挂载OBS至ModelArts环境和msprof-analyze的分析能力,ModelArts Standard 场景下对外提供一种插件化的 advisor 分析能力,详细的操作方式请参见基