检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
单击,选择“运维 > 主机管理服务(VMS)”。 选择左侧导航栏的“云服务器管理”,选择主机类型“弹性云服务器”或“边缘云服务器”。 在主机列表勾选需要申请回收的主机,单击“申请回收”。 在“申请回收”页面绑定相应电子流,并设置可延迟回收的小时数。 单击“确定”。 申请回收期间主机会显示在回
rLab中下载大于100MB的文件到本地。 从JupyterLab中下载不大于100MB的文件至本地 在JupyterLab文件列表中,选择需要下载的文件,单击右键,在操作菜单中选择“Download”下载至本地。 下载的目的路径,为您本地浏览器设置的下载目录。 图1 下载文件
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以 llama2-70b 和 llama2-13b
train_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS Turbo中保存训练的模型结果。(多机情况下,只有
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
Browser+工具将下载的模型文件上传至创建的文件夹目录下。 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的AK和SK进行签名验证,确保通过授权的账号才能访问指定的OBS资源。 父主题:
准备镜像 镜像方案说明 ECS获取和上传基础镜像 使用基础镜像 ECS中构建新镜像 父主题: 准备工作
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输出的路径(确保添
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
每个输出序列要生成的最大tokens数量。 top_k 否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。
vcache的空间。不同模型推理支持的max-model-len长度不同,具体差异请参见附录:基于vLLM(v0.3.2)不同模型推理支持的max-model-len长度说明。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
执行训练任务 执行训练任务(推荐) 执行训练任务(历史版本) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。