检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看资源组详细信息 单击资源组列表中的资源组名称,查看并修改资源组信息。 预览配置文件 单击资源组列表操作列的“配置文件预览”,查看资源组配置文件。 资源组排序 单击资源组列表操作列的“资源组排序”,在弹出的窗口中单击“上移”/“下移”,对该SLB实例下的资源组进行排序。 删除资源组 选择资源组列表操作列的“更多
al_CN。 灰度服务名称(中文) 灰度服务的中文名称。 所属服务 灰度服务所属的服务。 灰度路由引擎 选择灰度路由引擎。 微服务 SLB(>1.3.11) DMQ 分布式JOB 函数 注册中心 选择注册中心。 单击“保存”,在弹出的对话框中单击“确定”。 在灰度服务列表中会生成一条记录,当前状态为“待配置”。
Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS
Browser+工具将下载的模型文件上传至创建的文件夹目录下。 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的AK和SK进行签名验证,确保通过授权的账号才能访问指定的OBS资源。 父主题:
执行训练任务 执行训练任务【新】 执行训练任务【旧】 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
执行训练任务 ascendfactory-cli方式启动(推荐) demo.sh方式启动(历史版本) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提
问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分布式训练时,则需要用户购买可挂载的存储硬盘资源,以实现多
指令微调数据:如上述提供的 alpaca_gpt4_data.json 数据集,数据集包含有以下字段: instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为
Help JupyterLab工具自带的帮助参考。 图15 ipynb文件菜单栏中的快捷键 表4 ipynb文件菜单栏中的快捷键 快捷键 说明 保存文件。 添加新代码块。 剪切选中的代码块。 复制选中的代码块。 粘贴选中的代码块。 执行选中的代码块。 终止kernel。 重启kernel。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的tokenizer文件,需要修
问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分布式训练时,则需要用户购买可挂载的存储硬盘资源,以实现多
常见错误原因和解决方法 显存溢出错误 网卡名称错误 联网下载SimSun.ttf时可能会遇到网络问题 在运行finetune_ds.sh 时遇到报错 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
准备环境 本文档中的模型运行环境是ModelArts Lite的Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表1。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: ①更新transformes和tokenizers版本
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。