检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
NAL_TRAIN_DATA_PATH中则直接选中数据集文件。 “输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。
选择是否打开“永久保存日志”开关。 开关关闭(默认关闭):表示不永久保存日志,则任务日志会在30天后会被清理。可以在任务详情页下载全部日志至本地。 开关打开:表示永久保存日志,此时必须配置“日志路径”,系统会将任务日志永久保存至指定的OBS路径。 事件通知 选择是否打开“事件通知”开关。
时支持设置系统盘的磁盘类型和大小。 容器盘 打开“存储配置”开关后,可以看到每个实例自带的容器盘的磁盘类型、大小和数量。容器盘的类型只能是本地盘或云硬盘,不允许修改。 部分规格没有携带容器盘,在创建专属资源池时支持设置容器盘的磁盘类型和大小。此时,磁盘类型仅支持云硬盘(包括通用SSO、高IO和超高IO)。
gc-poc-sdxl-lora-train.tar.gz代码包。解压后上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver-ei-cto-office-ae06cae7-tmp1216 docker_build]#
zip文件中的ascendcloud-aigc-poc-sdxl-finetune.tar.gz代码包。解压后上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver-ei-cto-office-ae06cae7-tmp1216 docker_build]#
env: - name: OPEN_SCRIPT_ADDRESS # 开放脚本地址,其中region-id根据实际region修改,例如cn-southwest-2 value: "
-it ${container_name} bash Step4 下载原始模型包 从HuggingFace官网下载moondream2模型包到本地,下载地址:https://huggingface.co/vikhyatk/moondream2/tree/2024-03-06。 在宿主
env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: # run on terminal docker cp ${your_container_id}:/xxx/xxx/pytorch.tar
训练作业日志的保存位置,是一个OBS路径,如"obs://xx/yy/zz/"。 local_code_dir 否 String 算法的代码目录下载到训练容器内的本地路径。规则: 必须为/home下的目录。 v1兼容模式下,当前字段不生效。 当code_dir以file://为前缀时,当前字段不生效。 working_dir
作业卡在tensorboard中,出现报错: writer = Sumarywriter('./path)/to/log') 解决方案3 存储路径设为本地路径,如cache/tensorboard,不要使用OBS路径。 问题现象4 使用pytorch中的dataloader读数据时,作业卡在
alpaca_gpt4_data.json #微调数据文件 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚本代码进行修改。具体文件为:修改llm_train/AscendSpeed/scripts/dev_pipeline
法的输入输出管道。可以按照实例指定“data_url”和“train_url”,在代码中解析超参分别指定训练所需要的数据文件本地路径和训练生成的模型输出本地路径。 “job_config”字段下的“parameters_customization”表示是否支持自定义超参,此处填true。
id: <img>img_path</img>\n{your prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2
请注意日志中不能包含隐私内容,否则会造成信息泄露。 下载 训练日志仅保留30天,超过30天会被清理。如果用户需要永久保存日志,请单击系统日志窗口右上角下载按钮下载日志至本地保存,支持批量下载多节点日志。用户也可以在创建训练作业时打开永久保存日志按钮,保存训练日志至指定OBS路径。 针对使用Ascend规格创建
版本的平滑过渡升级。 说明: 当前免费计算规格不支持多版本灰度发布。 “存储挂载” 资源池为专属资源池时显示该参数。在服务运行时将存储卷以本地目录的方式挂载到计算节点(计算实例),模型或输入数据较大时建议使用。 SFS Turbo: 文件系统名称:选择对应的SFS Turbo极速
https://github.com/bigscience-workshop/Megatron-DeepSpeed 若git clone失败,可以尝试先下载至本地,然后复制至服务器中,在docker cp至容器中。 安装Megatron-DeepSpeed框架。 cd Megatron-DeepSpeed
modelarts.workflow.client.job_client import JobClient session初始化 # 如果您在本地IDEA环境中开发工作流,则Session初始化使用如下方式 # 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配
选择是否打开“永久保存日志”开关。 开关关闭(默认关闭):表示不永久保存日志,则任务日志会在30天后会被清理。可以在任务详情页下载全部日志至本地。 开关打开:表示永久保存日志,此时必须配置“日志路径”,系统会将任务日志永久保存至指定的OBS路径。 事件通知 选择是否打开“事件通知”开关。
FILE_PATH String 是 Dockerfile文件所在的路径。 -t / --target String 否 表示构建生成的tar包保存在本地的路径,默认是当前文件夹目录。 -swr / --swr-path String 是 SWR镜像名称,遵循organization/ima
当使用完全自定义镜像创建训练作业时,“启动命令”必须在“/home/ma-user”目录下执行,否则训练作业可能会运行异常。 创建算法 您在本地或使用其他工具开发的算法,支持上传至ModelArts中统一管理。 创建算法的准备工作。 完成数据准备:已在ModelArts中创建可用的