检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
监控项列表 通过图实例运维监控功能提供的相关监控项,用户可以从中获取有关图实例的状态以及可用资源数量等,并深入了解当前实例实时的资源消耗情况。 图引擎服务(GES)相关监控项指标,具体请参见表 图引擎服务(GES)监控列表。 表1 图引擎服务(GES)监控列表 监控对象 指标名称
使用业务面SDK 导入业务面SDK 初始化GES业务面客户端 Java SDK开发指导 Python SDK开发指导
终端节点 终端节点即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 图引擎服务的终端节点如下表所示,请您根据业务需要选择对应区域的终端节点。 表1 图引擎服务的终端节点 区域名称 区域 终端节点(Endpoint) 华北-北京一
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时
持久化版 持久化版业务面API包括点操作、边操作、元数据操作、索引操作、HyG数据集管理、HyG算法、算法、图统计、图操作、Job管理、Cypher操作API。 表1 点操作API 名称 起始版本 URL 功能描述 查询点详情 1.0.0 GET/ges/v1.0/{projec
算法API 执行算法(1.0.0) 算法API参数参考 父主题: 内存版
算法API 最短路径(Shortest Path)(1.0.0) 点集最短路(Shortest Path of Vertex Sets)(1.0.0) 标签传播(Label Propagation)(1.0.0) Louvain算法(1.0.0) 父主题: 业务面API
GES自定义策略 如果系统预置的GES权限,不满足您的授权要求,可以创建自定义策略。自定义策略中可以添加的授权项(Action)请参考权限策略和授权项。 目前华为云支持以下两种方式创建自定义策略: 可视化视图创建自定义策略:无需了解策略语法,按可视化视图导航栏选择云服务、操作、资源、条件等策略内容,可自动生成策略。
准备元数据 本地准备元数据 您需要在本地准备好需要上传的元数据文件,将元数据文件导入到图引擎服务中以便后续进行图分析。 准备上传的元数据文件需要注意以下几点: 可导入的元数据文件数上限为50,达到上限将不能再继续导入元数据。 元数据文件的格式必须为xml格式。 导入元数据至OBS(可选)
索引操作API 新建索引 删除索引 查询索引 批量新建索引 父主题: 持久化版
OD中介中心度(OD-betweenness Centrality) 概述 OD中介中心度算法(OD-betweenness Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人
什么是区域与可用区? 什么是区域、可用区 我们用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region):从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分
路径API 查询路径详情(1.1.6) 父主题: 内存版
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域
性能监控 在运维监控页面左侧导航栏单击“监控>性能监控”,进入性能监控页面。在性能监控页面展示以下这些性能指标的趋势,其中包括: CPU使用率(%) 内存使用率(%) 磁盘使用率(%) 磁盘I/O(KB/s) 网络I/O(KB/s) tomcat连接数使用率(%) swap盘使用率