检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用HyG算法分析图 GES服务为您提供了丰富的基础图算法、图分析算法和图指标算法,您可以使用图算法做关系分析等。 前提条件 前端创建持久化版图时,选择开启HyG计算引擎。 图1 HyG计算引擎 操作步骤 创建HyG图。 发送“POST /ges/v1.0/{project_id
备份图和恢复图 备份图 恢复图 删除备份 导出备份到OBS 从OBS中导入备份 父主题: 管理图
图数据的格式 一般图数据格式 动态图数据格式 父主题: 元数据操作
画布快照 在图引擎编辑器中,您可以使用快照功能,快速保存和恢复画布当前所展示的图,方便您进行查看。 保存快照 在图引擎编辑器中,单击画布右上角的按钮,系统会保存当前所画布展示的图。 快照生成成功后,系统会有如下图所示的提示: 图1 快照生成成功 由于数据储存在浏览器缓存中,所以当您切换浏览器后,快照数据会被清空。
在欧洲地区有业务的用户,可以选择“欧洲-巴黎”区域。 云服务之间的关系 如果多个云服务一起搭配使用,需要注意: 不同区域的弹性云服务器、关系型数据库、对象存储服务内网不互通。 不同区域的弹性云服务器不支持跨区域部署在同一负载均衡器下。 资源的价格 不同区域的资源价格可能有差异,请参见华为云服务价格详情。 如何选择可用区
路径API 查询路径详情(1.1.6) 父主题: 内存版
功能,恢复图数据时只能通过手动备份恢复。其他规格的图可以通过“自动备份”和“手动备份”两种方式恢复图数据。 具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏选择“备份管理”。 在“备份管理”页面,选择需要恢复数据的备份,在“操作”列单击“恢复”。 在“恢复”页面,选择待
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域
性能监控 在运维监控页面左侧导航栏单击“监控>性能监控”,进入性能监控页面。在性能监控页面展示以下这些性能指标的趋势,其中包括: CPU使用率(%) 内存使用率(%) 磁盘使用率(%) 磁盘I/O(KB/s) 网络I/O(KB/s) tomcat连接数使用率(%) swap盘使用率
计费模式概述 图引擎服务提供包年/包月(实例按月/按年预付费)、按需计费两种计费模式,以满足不同场景下的用户需求。 包年/包月:一种预付费模式,即先付费再使用,按照订单的购买周期进行结算。购买周期越长,享受的折扣越大。一般适用于设备需求量长期稳定的成熟业务。 按需计费:一种后付费
GES的Gremlin实现不支持显式地使用Transactions。 使用feature函数可以看到当前支持的Gremlin特性,显示false表示GES服务不支持此特性,显示为true表示GES服务支持此特性,特性详情可参考Gremlin官网。 gremlin> graph.features() ==>FEATURES
条件过滤 为了方便用户对图数据的分析,可以通过设置条件过滤,对图数据进行进一步的过滤分析。 具体操作如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 单击绘图区右侧的,或者在绘图区,选中一个点,单击右键,选择“查看属性”,显示“条件过滤及属性”页面。 在“条件过滤及属性”区,设置条件,然后单击“过滤”。
ct"。 资源操作依赖OBS,需要拥有OBS OperateAccess策略。(OBS是全局服务,对应的OBS策略需要在全局服务下查找)。 GES ReadOnlyAccess 图引擎服务资源只读权限,拥有该权限的用户只能做一些资源查看类的操作如查看图列表、查看元数据和查看备份等。
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于
属性编辑 属性页签可展示选中点或边的属性信息,也可对单个点或边的属性进行编辑。 属性编辑的操作如下: 在绘图区选中一个点或边,单击右键,选择“查看属性”,会在右侧显示“属性”页签,展示选中点边的属性信息。 若选中的点有多个标签(label),可单击label后的下拉框来查看其它label的属性信息。
管理面API(V1) 系统管理API 图管理API 备份管理API 元数据管理API 任务中心API 父主题: 历史API
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数