检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String 批量任务输出结果的OBS路径。 req_uri 是 String 批量任务中调用的推理接口,即模型镜像中暴露的REST接口,需要从模型的config.json文件中选取一个api路径用于此次推理;如使用ModelArts提供的预置推理镜像,则此接口为“/”。 mapping_type
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。
停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError: Broken pipe” 日志提示“ValueError: Invalid endpoint: obs.xxxx.com” 日志提示“errorMessage:The
为数据集创建新的版本。 dataset.create_version(name=None, version_format=None, label_task_type=None, label_task_id=None, **kwargs) 示例代码 示例一:为数据集创建新的版本 from
gpu_type 容器使用的GPU的型号。 node级别指标 cluster_id 该node所属CCE集群的ID。 node_ip 节点的IP。 host_name 节点的主机名。 pool_id 物理专属池对应的资源池ID。 project_id 物理专属池的用户的project id。
不变? 在线服务的API接口组成规则是什么? 在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 在线服务处于运行中状态时,如何填写推理请求的request header和request body 作为调用发起方的客户端无法访问已经获取到的推理请求地址 服务部署失败,报错ModelArts
hold:持有 skipped:跳过 inputs 否 Array of JobInput objects 节点的输入项。 outputs 否 Array of JobOutput objects 节点的输出项。 step_uuid 否 String 节点的UUID,唯一性标识。
息头中X-Subject-Token的值)。 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型 描述 total_count Integer 不分页的情况下符合查询条件的总集群数量。 count Integer 当前查询结果的集群数量,不设置offset、lim
指定每个设备的训练批次大小 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
来源训练作业的版本,模型是从训练作业产生的可填写,用于溯源;如模型是从第三方元模型导入,则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。
Environment实例 描述模型正常运行需要的环境,如使用的python版本、tensorflow版本等。 Environment实例的示例请参见示例代码。 source_job_id 否 String 来源训练作业的ID,模型是从训练作业产生的可填写,用于溯源;如模型是从第三方元模型导入,则为空,默认值为空。
删除开发环境实例,删除的资源包括Notebook容器以及对应的所有存储资源。 通过运行的实例保存成容器镜像 运行的实例可以保存成容器镜像,保存的镜像中,安装的依赖包(pip包)不丢失,VSCode远程开发场景下,在Server端安装的插件不丢失。 查询支持的有效规格列表 查询支持的有效规格列表。
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface