检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/J
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
MaaS使用场景和使用流程 ModelArts Studio大模型即服务平台(后续简称为MaaS服务),提供了简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,降低企业AI落地的成本与难度。 当您第一次使用MaaS服务时,可以参考快速入门使用ModelArts
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
设置在线服务故障自动重启 场景描述 当系统检测到Snt9b硬件故障时,自动复位Snt9B芯片并重启推理在线服务,提升了推理在线服务的恢复速度。 约束限制 仅支持使用Snt9b资源的同步在线服务。 只支持针对整节点资源复位,请确保部署的在线服务为8*N卡规格,请谨慎评估对部署在该节点的其他服务的影响。
训练作业容错检查 用户在训练模型过程中,存在因硬件故障而产生的训练失败场景。针对硬件故障场景,ModelArts提供容错检查功能,帮助用户隔离故障节点,优化用户训练体验。 容错检查包括两个检查项:环境预检测与硬件周期性检查。当环境预检查或者硬件周期性检查任一检查项出现故障时,隔离
团队标注使用说明 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能仅在以下Region支持:华北-北京四、华北-北京一、华东-上海一、华南-广州
从OBS导入数据到数据集场景介绍 导入方式 OBS导入数据方式分为“OBS目录”和“Manifest文件”两种。 OBS目录:指需要导入的数据集已提前存储至OBS目录中。此时需选择用户具备权限的OBS路径,且OBS路径内的目录结构需满足规范,详细规范请参见从OBS目录导入数据规范
创建图像分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏选择“开发空间 > 自动学习”,进入自动学习页面。
创建预测分析项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
GPT-2基于Server适配PyTorch GPU的训练推理指导 场景描述 本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-DeepSpeed
训练作业的运行参数列表。 pool_id String 资源池ID。 property String 属性名。 req_uri String 批量任务中调用的推理路径。 result_type Integer 自动分组结果处理方式。可选值如下: 0:保存到OBS 1:保存到样本 samples
准备数据 本教程使用自定义数据集,数据集的介绍及下载链接参考自定义数据。 自定义数据 Qwen-VL指令微调数据:Qwen-VL-Chat微调的数据需要用户自行制作,需要准备一个JSON文件存放训练样本,每个样本需包含id和对话内容。对话内容按user和assistant轮流发言
准备数据 本教程使用自定义数据集,数据集的介绍及下载链接参考自定义数据。 自定义数据 Qwen-VL指令微调数据:Qwen-VL-Chat微调的数据需要用户自行制作,需要准备一个JSON文件存放训练样本,每个样本需包含id和对话内容。对话内容按user和assistant轮流发言
使用DCGM监控Lite Server资源 场景描述 本文主要介绍如何在Lite Server上配置DCGM监控,用于监控Lite Server上的GPU资源。 DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
使用ModelArts VSCode插件调试训练ResNet50图像分类模型 应用场景 Notebook等线上开发工具工程化开发体验不如IDE,但是本地开发服务器等资源有限,运行和调试环境大多使用团队公共搭建的CPU或GPU服务器,并且是多人共用,这带来一定的环境搭建和维护成本。