检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 开发盘古大模型提示词工程
创建提示词评估任务 选择候选提示词进行批量自动化评估,步骤如下:。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。
Agent开发平台介绍 Agent开发平台简介 Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建
型更好地收敛。 数据批量大小 数据批量是指训练过程中将数据集分成小批次进行读取,并设定每个批次的数据大小。 通常,较大的批量能够使梯度更加稳定,有助于模型的收敛。然而,较大的批量也会占用更多显存,可能导致显存不足,并延长每次训练时间。 单步迭代时处理的数据批量大小 指定每次迭代时处理的数据批量大小。
开发盘古大模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。 父主题: 批量评估提示词效果
于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容直接输出结果,无中间的对话交互过程。适用于内容生成、批量翻译、数据分析等场景。 其中,任务型工作流不支持配置消息节点和提问器节点。 工作流编排流程见表1。 表1 工作流编排流程 操作步骤 说明 步骤1:创建工作流
什么是盘古大模型 盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发平台及大模型应用开发平台,盘古NLP大模型、多模态大模型、CV大模型、预测大模型
模型开发 ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts
不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7.5e-05 学习率衰减比率(lea
width 是 图像的宽度,以像素为单位。 date_captured 否 图像捕获的日期和时间。 flickr_url 否 图像在Flickr网站上的URL。 id 是 图像的唯一标识符。 annotations 是 标注信息。 num_keypoints 是 标注的关键点数量。 area
发布提示词 通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。
Token计算器 功能介绍 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployment
提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整
功能总览 功能总览 全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据流通和管理等功能。
产品优势 预置多,数据工程“易” ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。 0代码,模型开发“简” ModelArts Studio大模型开发平台预置盘古系列预训练大模型,支持快速
微调数据来源: 需要针对涉及的模块分别构造相关的微调数据。 query改写模块 来源:互联网开源数据集 问答模块 来源一:互联网开源数据集,如政府网站网页、政府在线问答公开数据、政务百科等。 来源二:特定的私域数据,针对于具体场景和项目需求,收集相关的文本数据。比如通过与当地政府的政数局
云容器引擎-成长地图 | 华为云 盘古大模型 盘古大模型服务(PanguLargeModels)致力于深耕行业,打造多领域行业大模型和能力集。盘古大模型能力通过ModelArts Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。