检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
06:00完成了数据校验,10:06:00-10:12:00完成了图像分类,11:30:00完成了服务部署,并在12:00:00停止运行在线服务。同时,使用公共资源池运行实例,模型训练时选择资源池规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.40 元/小时);服务部署时选择资源池规格为CPU:
根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表7 SearchLabels 参数 参数类型 描述 labels Array
用于后续的训练或推理任务 plot_loss true 用于指定是否绘制损失曲线。如果设置为"true",则在训练结束后,将损失曲线保存为图片 overwrite_output_dir true 是否覆盖输出目录。如果设置为"true",则在每次训练开始时,都会清空输出目录,以便保存新的训练结果。
Step2 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
shell python mslite_pipeline.py 图2 执行推理脚本 图3 MindSpore Lite pipeline输出的结果图片 父主题: 应用迁移
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
Notebook”,单击“创建”,在创建Notebook页面,资源池规格只能选择专属资源池。 使用子账号用户登录ModelArts控制台,选择“模型部署 > 在线服务”,单击“部署”,在部署服务页面,资源池规格只能选择专属资源池。 父主题: 典型场景配置实践
Step2 权重格式离线转换(可选) AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本:
cision_compare_details_{timestamp}.csv文件的API详细达标情况。 详细工具的使用指导请参考离线预检和在线预检介绍。 父主题: msprobe工具使用指导
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
在ModelArts Studio左侧导航栏中,选择“模型部署”。 在“模型部署”页面,单击“我的服务”页签,在目标模型服务右侧,单击操作列“更多 > 在线体验”,进入“模型体验”页面。 在“模型体验”页面右上角,单击“参数设置”,拖动或直接输入数值配置推理参数。单击“恢复默认”可以将参数值调回默认值。
选择步骤3构建的镜像。 图3 创建模型 将创建的模型部署为在线服务,大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 图4 部署为在线服务 调用在线服务进行大模型推理,请求路径填写/v2/models/en
异常的详细原因、服务被启动、停止、更新的时间点等。 事件保存周期为1个月,1个月后自动清理数据。 查看服务的事件类型和事件信息,请参见查看在线服务的事件 日志 展示当前服务下每个模型的日志信息。包含最近5分钟、最近30分钟、最近1小时和自定义时间段。 自定义时间段您可以选择开始时间和结束时间。
提供交互式云上开发环境,包含标准化昇腾算力资源和完整的迁移工具链,帮助用户完成昇腾迁移的调测过程,进一步可在平台上将迁移的模型一键部署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
请求Body参数 参数 是否必选 参数类型 描述 schedule 否 Array of Schedule objects 服务调度配置,仅在线服务可配置,默认不使用,服务长期运行。 description 否 String 服务描述,不超过100个字符,不能包含字符有!<>=&"'。不设置此参数表示不更新。
异常。 物体检测:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。