已找到以下 46 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 创建智能场景 - 推荐系统 RES

    创建智能场景 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。

  • 上传实时数据 - 推荐系统 RES

    上传实时数据 RES通过DIS SDK上传实时数据,用户实时日数据并做近线处理。当前仅支持Java语言的SDK,示例请参见《数据接入服务SDK参考》。 前提条件 如果需要使用近线上传实时数据的用户,可以使用DIS SDK接口上传,请您按照需求下载DIS SDK,下载完之后按照下面的说明进行SDK升级。

  • 如何上传实时数据? - 推荐系统 RES

    如何上传实时数据? 推荐系统支持您通过SDK上传实时数据,具体操作方法如下。 前提条件 如果需要使用近线上传实时数据的用户,可以使用DIS SDK接口上传,请您按照需求下载DIS SDK,下载完之后按照下面的说明进行SDK升级。 子账户无法使用SDK上传数据,需要主账号授权子账号DIS

  • 特征工程 - 推荐系统 RES

    特征工程 特征工程可对推荐系统的离线数据进行处理,它包含两个功能: 从离线数据中提取用户、物品画像和RES内部通用格式数据; 把RES内部通用格式数据处理成训练排序模型所需的训练数据、测试数据等。 与功能对应,特征工程的两个任务分别是: 初始用户画像-物品画像-标准宽表生成 排序样本预处理

  • 召回策略 - 推荐系统 RES

    召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将

  • 近线作业 - 推荐系统 RES

    近线作业 近线作业简介 近线作业为推荐系统提供实时计算能力。近线作业以数据接入服务DIS中的数据为数据源,实时计算并更新用户画像、物品画像和推荐候选集等数据。使用近线作业,用户需先将业务系统埋点日志转换成实时日志指定格式,并实时写入DIS相应通道。近线作业具体实现请参见图1。 图1