检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
“VPC 终端节点>终端节点”,进入“终端节点”页面。 单击右上角的“购买终端节点”,进入购买页面。 区域:终端节点所在区域。 不同区域的资源之间内网不互通,请确保与ModelArts所在区域保持一致。 服务类别:请选择“按名称查找服务”。 服务名称:填入步骤1中获取的“终端节点
message String 任务的运行信息。 progress Float 任务当前进度百分比。 resource_id String 资源ID。 result Result object 任务结果。 status Integer 任务状态。可选值如下: -1:排队中 0:初始化
WorkflowServicePackege 参数 是否必选 参数类型 描述 package_id 否 String 资源包的UUID。 status 否 String 资源包状态。 pool_id 否 String 资源池ID。 service_id 否 String 服务ID。 workflow_id 否
是IAM最初提供的一种根据用户的工作职能定义权限的粗粒度授权机制。策略以API接口为粒度进行权限拆分,授权更加精细,可以精确到某个操作、资源和条件,能够满足企业对权限最小化的安全管控要求。 如果您要允许或是禁止某个接口的操作权限,请使用细粒度策略。 帐号具备所有接口的调用权限,
同厂商的摄像机上,这是一项非常耗时、费力的巨大工程,ModelArts支持将训练好的模型一键部署到端、边、云的各种设备上和各种场景上,并且还为个人开发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。
计算节点规格:根据您的实际需求选择相应的规格,不同规格的配置费用不同,选择好规格后,配置费用处会显示相应的费用。 是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写
计算节点规格:根据您的实际需求选择相应的规格,不同规格的配置费用不同,选择好规格后,配置费用处会显示相应的费用。 是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写
服务状态,默认不过滤服务状态。可根据服务状态查询,取值如下。 running:运行中,服务正常运行,正在计费。 deploying:部署中,服务正在部署,调度资源部署等。 concerning:告警,后端实例异常,可能正在计费。例如多实例的情况下,有的实例正常,有的实例异常。正常的实例会产生费用,此时服务状态是concerning。
启动AOE调优后,模型转换时长会延长到数小时,因为其中包含了AOE的转化过程耗时较长。您也可以指定调优时间,一般情况下时间越长效果会越好,一般10h以内即可,推荐在后台执行。调优完成后,默认将AOE生成的知识库保存在“/root/Ascend/latest/data/aoe”路径下,同时会在aoe_
WorkflowServicePackege 参数 参数类型 描述 package_id String 资源包的UUID。 status String 资源包状态。 pool_id String 资源池ID。 service_id String 服务ID。 workflow_id String
由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel size)流水线模型并行策略,具体详细参数配置如表2所示。 步骤3 启动训练脚本
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
--max-num-batched-tokens:prefill阶段,最多会使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
值能够被NPU/(TP×PP×CP)的值进行整除。 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型