检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建连接器 连接器用来快速连接到用户名下的各类资源服务。 前提条件 计算节点处于运行中,且所在空间信息的“认证状态”为“已认证”。 建议使用者提前了解MapReduce服务(MRS Hive)集群。 “连接器类型”选择MapReduce服务(MRS Hive)时,选择的MRS集群
执行脚本 用户本地的自定义执行脚本,样例请参考准备本地横向联邦数据资源中步骤4。 训练模型 用户自定义模型,样例请参考准备本地横向联邦数据资源中步骤3。 初始权重参数 评估时必填,训练时可选,样例请参考准备本地横向联邦数据资源中步骤3。 迭代次数 即epoch,数据迭代计算的次数。 训练轮数
度? 提升计算并行度 可以在作业开发界面的运行参数中,填写user.task.concurrency参数,提升用户侧此类加密任务的并行度。推荐该值填4-16左右,不建议超过30。 图1 填写参数 tics.task.concurrency参数提升的是tics平台提供的计算节点并发度,一般填写4左右即可,不建议超过8。
根据企业的业务组织,在您的华为账号中,给企业中不同职能部门的员工创建IAM用户,让员工拥有唯一安全凭证,并使用TICS资源。 根据企业用户的职能,设置不同的访问权限,以达到用户之间的权限隔离。 将TICS资源委托给更专业、高效的其他华为账号或者云服务,这些账号或者云服务可以根据权限进行代运维。 如果华为
执行脚本 用户本地的自定义执行脚本,样例请参考准备本地横向联邦数据资源中步骤4。 训练模型 用户自定义模型,样例请参考准备本地横向联邦数据资源中步骤3。 初始权重参数 模型的初始权重,样例请参考准备本地横向联邦数据资源中步骤3。 迭代次数 即epoch,数据将会被执行的次数。评估型作业的迭代次数固定为1。
对接AOM日志服务 对接AOM日志服务后,AOM服务将支持收集可信计算节点日志,推荐开启。 计算节点为云租户部署时,在购买时打开“开启AOM日志监控”功能,即可对接AOM。 计算节点为边缘节点部署时,需要手动在IEF平台对接AOM。 约束限制 对接AOM之后,相应的日志存储在AO
创建数据集 通过数据集,用户可获取到名下详细的资源列表。同时,对于有敏感信息的数据集,还可以单独设置隐私策略,并在发布到空间侧后对其他参与方生效,限制敏感信息的使用,保障数据安全。 创建结构化数据集 创建数据集前需存在已创建好的连接器,参考创建连接器。 用户登录TICS控制台。
其他云服务资源进行操作,cce_admin_trust委托具有Tenant Administrator权限。Tenant Administrator拥有除IAM管理外的全部云服务管理员权限,用于对CCE所依赖的其他云服务资源进行调用,且该授权仅在当前区域生效。关于资源委托详情,您可参考委托进行了解。
其他云服务资源进行操作,cce_admin_trust委托具有Tenant Administrator权限。Tenant Administrator拥有除IAM管理外的全部云服务管理员权限,用于对CCE所依赖的其他云服务资源进行调用,且该授权仅在当前区域生效。关于资源委托详情,您可参考委托进行了解。
属组权限,否则会影响部分功能使用。 资源分配策略 CPU(Cores) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0
”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征;过低的iv值没有区分性会造成训练资源的浪费,过高的iv值又过于突出可能会过度影响训练出来的模型。 例如这里大数据厂商提供的f4特征iv值是0,说明这个特征对于标签的识别没有区
请确保选择的主机路径具有1000:1000属组权限,否则会影响部分功能使用。 资源分配策略 CPU(Cores) 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0.6倍,且向下取整。
属组权限,否则会影响部分功能使用。 资源分配策略 CPU(Cores) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0
请确保选择的主机路径具有1000:1000属组权限,否则会影响部分功能使用。 资源分配策略 CPU(Cores) 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0.6倍,且向下取整。
请确保选择的主机路径具有1000:1000属组权限,否则会影响部分功能使用。 资源分配策略 CPU(Cores) 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0.6倍,且向下取整。
安全沙箱机制 背景 当计算节点执行横向联邦训练型作业时,若执行脚本中包含恶意行为,包含但不限于非授权访问其他作业数据、篡改文件和配置、恶意消耗容器资源等场景时,会影响到数据提供方的计算环境安全以及其他学习作业的正常执行。 针对该问题,在边缘节点部署场景中,TICS通过构建Python安全
项目ID 获取项目ID 项目ID表示租户的资源,账号ID对应当前账号。用户可在对应页面下查看不同Region对应的项目ID和账号ID。 注册并登录管理控制台。 在用户名的下拉列表中单击“我的凭证”。 在“API凭证”页面,查看账号名和账号ID,在项目列表中查看项目ID。 调用API获取项目ID
属组权限,否则会影响部分功能使用。 资源分配策略 CPU(Cores) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配核数。 内存(GiB) - 用户可根据返回资源剩余规格,按照分析与学习需求,灵活分配内存。容器预留部分管理资源,作业可用内存最大值设置为内存数值的0
的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict.csv id,col0,col1,col2,col3
说明 GET 请求服务器返回指定资源。 PUT 请求服务器更新指定资源。 POST 请求服务器新增资源或执行特殊操作。 DELETE 请求服务器删除指定资源,如删除对象等。 HEAD 请求服务器资源头部。 PATCH 请求服务器更新资源的部分内容。 当资源不存在的时候,PATCH可能会去创建一个新的资源。