检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Ascend/driver目录。 X86 CPU架构和ARM CPU架构的自定义镜像分别只能运行于对应CPU架构的规格中。 执行如下命令,查看自定义镜像的CPU架构。 docker inspect {自定义镜像地址} | grep Architecture ARM CPU架构的自定义镜像,上述命令回显如下。
py中用等CPU侧初始化实现替换完成计算之后再切回device进行计算(下图第731行)。 然后再比对分析发现所有API计算都已对齐结果,转而查看Loss对齐情况。 父主题: 精度对齐
说明用户输入了有效的仓库地址,同时给出该仓库下所有的分支供选择,选择完成后单击“克隆”开始Clone仓库。 GitHub开源仓库地址:https://github.com/jupyterlab/extension-examples 图3 输入有效的GitHub开源仓库地址 Clone仓库的过程中会将进度展示出来。
ModelLink中。 git clone https://gitee.com/ascend/ModelLink.git cd ModelLink git checkout 8f50777 cd .. git clone https://gitee.com/lmzwhu/Megatron-LM
的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。
练大规模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/
练大规模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/wor
app名称。 app_remark 否 String app备注。 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 响应参数 状态码:200 表4 响应Body参数
py会在cache中读取SimSun.ttf 文件,如果没有,就会联网下载,ModelArts作业在执行过程中可能不能请求网络,会遇到报错。 # 直接手动下载 https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf
模型权重目录下 /home/ma-user/work/model-dir/Qwen-VL-Chat/ https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf
模型权重目录下 /home/ma-user/work/model-dir/Qwen-VL-Chat/ https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf
在ModelArts的Notebook中如何在代码中打印GPU使用信息? 用户可通过shell命令或python命令查询GPU使用信息。 使用shell命令 执行nvidia-smi命令。 依赖CUDA nvcc watch -n 1 nvidia-smi 执行gpustat命令。
数据管理(旧版) 查询数据集列表 创建数据集 查询数据集详情 更新数据集 删除数据集 查询数据集的统计信息 查询数据集监控数据 查询数据集的版本列表 创建数据集标注版本 查询数据集版本详情 删除数据集标注版本 查询样本列表 批量添加样本 批量删除样本 查询单个样本信息 获取样本搜索条件
POST https://{endpoint}/v1/{project_id}/models { "model_name" : "mnist", "model_version" : "1.0.0", "source_location" : "https://models
--max-out-len:模型的最大输出长度。 --hf-num-gpus:需要使用的卡数。 --batch-size:推理每次处理的输入数目。 -w:存放输出结果的目录。 查看精度测试结果。 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mo
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
=0,1 通过命令npu-smi info查询NPU卡为容器中的第几张卡。例如下图查询出两张卡,如果希望使用第一和第二张卡,则“export ASCEND_RT_VISIBLE_DEVICES=0,1”,注意编号不是填4、5。 图2 查询结果 配置环境变量。 export DEFER_DECODE=1
资源管理 查询OS的配置参数 查询插件模板 查询节点列表 批量删除节点 批量重启节点 查询事件列表 创建网络资源 查询网络资源列表 查询网络资源 删除网络资源 更新网络资源 查询资源实时利用率 创建资源池 查询资源池列表 查询资源池 删除资源池 更新资源池 资源池监控 资源池统计
像时,如遇到git下载代码出现以下类似的报错信息,关闭git验证即可。 报错信息: fatal: unable to access 'https://gitee.com/ascend/ModelLink.git/': error setting certificate verify
创建Notebook实例 查询Notebook实例列表 查询所有Notebook实例列表 查询Notebook实例详情 更新Notebook实例 删除Notebook实例 通过运行的实例保存成容器镜像 查询Notebook支持的有效规格列表 查询Notebook支持的可切换规格列表 查询运行中的Notebook可用时长