检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
需的规格和进行权限配置。随后,在ModelArts控制台上购买Lite Cluster资源。请参考Lite Cluster资源开通。 资源配置:完成资源购买后,需要对网络、存储、驱动进行相关配置。请参考Lite Cluster资源配置。 资源使用:完成资源配置后,您可以使用集群资
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py
“/home/ma-user/work”目录以及动态挂载在“/data”下的目录下的数据会保存,其余目录下内容会被清理。例如:用户在开发环境中的其他目录下安装的外部依赖包等,在Notebook停止后会被清理。您可以通过保存镜像的方式保留开发环境设置,具体操作请参考保存Notebook实例。 No
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
ine.yaml # 性能基线配置 |──llama_factory_accuracy_baseline.yaml # 精度基线配置 该目录下主要放置性能、精度任务的yaml配置文件,包含性能基线、精度基线、训练最佳实践参数等,以上配置文件仅供参考。 代码上传至OBS
pter,ma-cli命令将不支持创建算法工程,无法在Notebook中基于已有算法工程进行资产(数据、模型权重、算法文件)安装、模型开发、训练和推理部署等任务。如您有任何问题,可随时通过工单或者服务热线(4000-955-988或950808)与我们联系。 父主题: 下线公告
W8A8量化 什么是W8A8量化 W8A8量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。 约束限制 支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表。 激活量化支持动态per-token和静态per-tensor,支持非对称量化。
健康检查:选填,用于指定模型的健康检查。仅当自定义镜像中配置了健康检查接口,才能配置“健康检查”,否则会导致模型创建失败。 apis定义:选填,用于编辑自定义镜像的apis定义。模型apis定义需要遵循ModelArts的填写规范,参见模型配置文件说明。 本样例的配置文件如下所示: [{
mit_id> 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 图1 docker镜像构建过程 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
mit_id> 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 图1 docker镜像构建过程 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
cli是Hugging Face官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例: huggingface-cli download --resume-download meta-l
例如,文本文件的内容如下所示。标注对象与标注内容之间采用tab键分隔。 手感很好,反应速度很快,不知道以后怎样 positive 三个月前买了一个用的非常好果断把旧手机替换下来尤其在待机方面表现得尤为明显 positive 没充一会电源怎么也会发热呢音量健不好用回弹不好 negative 算是给自己的
getenv('POD_IP') // 获取容器IP ROOT_PATH = os.getenv('ROOT_PATH') //获取服务根路径 def greet(name): return "Hello " + name + "!" with gr.Blocks() as
description 否 String Workflow工作流配置参数的描述。 example 否 Object Workflow工作流配置参数的样例。 delay 否 Boolean 是否为延迟输入的参数,默认为否。 default 否 Object 配置参数的默认值。 value 否 Object