检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1 支持的模型列表所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
911版本,请参考获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包
支持精度测试 profiling 支持分析算子的profiling 环境准备 本工具支持x86和ARM的系统环境,使用前需要安装以下软件。 表2 安装软件及步骤 软件 安装步骤 mindspore-lite 安装版本:2.2.10 下载地址:https://www.mindspore.cn/lite/docs/zh-CN/r2
过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
2.9(基于CentOS制作的Linux发行版),经常遇到服务器重启后,操作系统内核无故升级,导致系统上原安装的nvidia-driver等软件无法使用,只能卸载重新安装。 原因分析 分析EulerOS内核是如何在不知情的情况下升级的: 首先查看当前操作系统内核。 [root@Server-ddff
dia驱动、CUDA和nvidia-fabricmanager等软件后,驱动程序可能已经正确配置,从而解决了这个问题。 硬件问题:如果GPU之间的NVLINK连接存在硬件故障,那么这可能会导致带宽受限。重新安装软件后,重启系统,可能触发了某种硬件自检或修复机制,从而恢复了正常的带宽。
目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用CPU/GPU规格资源运行训练作业。 ubuntu-18.04 cuda-11.1 python-3.7.13 openmpi-3.0.0 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示:
目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用CPU/GPU规格资源运行训练任务。 ubuntu-18.04 cuda-11.1 python-3.7.13 openmpi-3.0.0 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示:
本示例使用Linux x86_64架构的主机,操作系统ubuntu-18.04,通过编写Dockerfile文件制作自定义镜像。 目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用GPU规格资源运行训练作业。 ubuntu-18.04 cuda-11.2 python-3.7
包。但是某些包的安装升级需要root权限,运行中的Notebook实例中无root权限,所以在Notebook实例中安装需要root权限的软件,目前在预置的开发环境镜像中是无法实现的。用户可以使用ModelArts提供的基础镜像或用户第三方镜像来编写Dockerfile,构建出完全适合自己的镜像。
目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用CPU/GPU规格资源运行训练任务。 ubuntu-18.04 cuda-11.1 python-3.7.13 pytorch-1.8.1 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示:
制作流程 图1 训练作业的自定义镜像制作流程 场景一:预置镜像满足ModelArts训练平台约束,但不满足代码依赖的要求,需要额外安装软件包。 具体案例参考使用预置镜像制作自定义镜像用于训练模型。 场景二:已有本地镜像满足代码依赖的要求,但是不满足ModelArts训练平台约束,需要适配。
目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用CPU/GPU规格资源运行训练作业。 ubuntu-18.04 cuda-11.1 python-3.7.13 pytorch-1.8.1 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示:
获取在线服务API接口地址和文件预测输入参数信息 方式一:使用图形界面的软件进行预测(以Postman为例) 下载Postman软件并安装,您也可以直接在Chrome浏览器添加Postman扩展程序(也可使用其他支持发送post请求的软件)。Postman推荐使用7.24.0版本。 打开Postman,如图2所示。
910版本,请参考获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包
离线训练安装包准备说明 申请的模型软件包一般依赖连通网络的环境。若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载