检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
已下载的数据。 步骤2:订阅算法 在AI Gallery搜索“ResNet_v1_50”,进入算法详情页。 单击右侧的“训练 > ModelArts”后,选择ModelArts的云服务区域(即要部署服务的云服务区),单击“确认”,跳转至ModelArts的“算法管理>我的订阅”中。
传”按钮上传示例图片,然后单击“预测”。 预测完成后,预测结果显示区域将展示预测结果,根据预测结果内容,可识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段
传”按钮上传示例图片,然后单击“预测”。 预测完成后,预测结果显示区域将展示预测结果,根据预测结果内容,可识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模
Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常
Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常
在复核页面,单击“按照标签过滤”,选择需要复核的标签类型图片。 在当前页面,您可以选择对当前的标签类型的图片,按照标注面积排序,或按照宽高比排序。 依次单击需要复核的图片,在标注页面拖动图片的标注框,即可重新完成标注。(修改后的图片会带有“已修改”的信息。) 您也可以选中需要删除标签的图片,单击右上方的,删除原始的
资产识别与管理 资产识别 用户在AI Gallery中的资产包括用户发布的AI资产以及用户提供的一些个人信息。 AI资产包括但不限于文本、图形、数据、文章、照片、图像、插图、代码、AI算法、AI模型等。 用户的个人信息包括: 用户注册时提供的昵称、头像、邮箱。 用户参加实践时提供的姓名、手机号、邮箱。
适合图中主体相对单一的场景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。
如何删除ModelArts数据集中的图片? 登录ModelArts管理控制台,左侧菜单栏选择“数据管理>数据标注”,进入数据标注列表,单击需要删除图片的数据集,进入标注详情页。 在“全部”、“未标注”或“已标注”页面中,依次选中需要删除的图片,或者“选择当前页”选中该页面所有图片,然后单击删除。
计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数相加超过100张,如果某些图片的标签具有相似性,
在ModelArts训练得到的模型欠拟合怎么办? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
ModelArts数据集新建的版本找不到怎么办? 版本列表是可以缩放的,请缩小页面后查找。 单击数据集名称,进入数据集概览页,在概览页选择“版本管理”,可对页面进行缩小。 父主题: Standard数据准备
在ModelArts的Notebook中实例重新启动后要怎么连接? 可以在本地的ssh config文件中对这个Notebook配置参数“StrictHostKeyChecking no”和“UserKnownHostsFile=/dev/null”,如下参考所示: Host roma-local-cpu
在ModelArts的Notebook中,访问外网速度不稳定怎么办? 为了方便AI开发者在使用Notebook时访问外部资源,ModelArts提供了一个免费的共享网络代理服务。借助这个代理,开发者可以更加便捷地下载所需的各类资源,助力开发工作的顺利进行。 由于该网络代理免费且共
file。如下图所示: 方法二:单击上侧菜单栏中的Run > Open configurations按钮 步骤二:选择语言 如果需要对Python语言进行设置,在弹出的Select a debug configuration中选择Python File,其他语言操作类似。如下图所示: 步骤三:编辑launch
音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。 使用自动学习
DUMP_GRAPH_LEVEL=2 # 1:表示dump图所有图。 2:表示dump除子图外的所有图。 3:表示只dump最后一张图。 问题分析。 配置以上的环境变量之后,再重新转换模型,导出对应的日志和dump图进行分析: 报错日志中搜到“not support
History页签后,下载该插件的离线安装包,如图所示。 图1 Python插件离线安装包 在本地VS Code环境中,将下载好的.vsix文件拖动到远端Notebook中。 右键单击该文件,选择Install Extension VSIX。 方法二:设置远端默认安装的插件 按照在ModelArts的Notebook中如何设置VS
日志提示Compile graph failed 问题现象 日志提示:Compile graph failed。 图1 报错提示 原因分析 模型转换时未指定Ascend后端。 处理方法 需要在模型转换阶段指定“--device=Ascend”。 父主题: 常见问题