检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练脚本说明 训练启动脚本说明和参数配置 训练数据集预处理说明 训练权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
MXNet、PyTorch、MindSpore等)下均可以使用。 MoXing Framework模块提供了OBS中常见的数据文件操作,如读写、列举、创建文件夹、查询、移动、复制、删除等。 在ModelArts Notebook中使用MoXing接口时,可直接调用接口,无需下载或
设置场景类别和数据处理类型 设置输入与输出。需根据实际数据情况选择“数据集”或“OBS目录”。设置为“数据集”时,需填写“数据集名称”和“数据集版本”;设置为“OBS目录”时,需填写正确的OBS路径。 图2 输入输出设置-数据集 图3 输入输出设置-OBS目录 确认参数填写无误后,单击“创建”,完成数据处理任务的创建。
数据准备与处理 数据准备使用流程 创建ModelArts数据集 导入数据到ModelArts数据集 处理ModelArts数据集中的数据 标注ModelArts数据集中的数据 发布ModelArts数据集中的数据版本 分析ModelArts数据集中的数据特征 导出ModelArts数据集中的数据
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.909)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.910)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.908)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909)
default="True", description="是否进行数据清洗, 数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.Al
ID”,并输入步骤1中复制的Notebook的ID,单击图标即可搜索该资源的账单。 图1 查询资源账单 这里设置的统计维度为“按使用量”,统计周期为“按账期”,您也可以设置其他统计维度和周期,详细介绍请参见流水与明细账单。 查看训练作业的账单 ModelArts训练作业查询资源账
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
__instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。 处理方法 如果超过最大递归深度,建议您在启动文件中增大递归调用深度,具体操作如下: import sys sys.setrecursionlimit(1000000) 父主题: 业务代码问题
使用量化模型需要在NPU的机器上运行。 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下: { "bits": 8, "group_size":
创建Standard专属资源池 准备数据(可选) 创建数据集 ModelArts Standard提供了数据管理功能,用户可以在ModelArts Standard中创建数据集,用于管理、预处理、标注数据。 如果用户已经准备了可用于训练的数据,直接上传到OBS即可,无需使用数据管理功能。 创建数据集 标注数据
Profiling数据采集 在train.py的main()函数Step迭代处添加配置,添加位置如下图所示: 此处需要注意的是prof.step()需要加到dataloder迭代循环的内部以保证采集单个Step迭代的Profiling数据。 更多信息,请参见Ascend PyTorch
ModelArts数据管理中的数据集(即manifest文件格式) 使用moxing的copy_manifest接口将文件复制到本地并获取新的manifest文件路径,然后使用SDK解析新的manifest文件。 ModelArts数据管理模块在重构升级中,对未使用过数据管理的用户不可
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 离线训练安装包准备说明 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.910)
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 离线训练安装包准备说明 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.911)