检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
allow。 allow表示允许重复边。 ignore表示忽略之后的重复边。 override表示覆盖之前的重复边。 图规格为(持久化版)的图暂不支持该参数。 ignoreLabel 否 Boolean 重复边的定义,是否忽略Label。取值为true或者false,默认取true。
建议在使用图期间,不要删除存储在OBS中的数据。 导入目录下的单文件或者导入的单文件大小不能超过5GB,如果超过5GB,则会导入失败,建议把文件拆成小于5GB的多个文件后再导入。 单次导入的文件总大小(包括点、边数据集)不能超过可用内存的1/5。可用内存参考运维监控看板>节点监控
需要同时添加两个索引(点label索引和边label索引)才能正常使用Cypher查询。 如果图中已经存在hasLabel为true, indexProperty为空的点索引或边索引,则不需要重复构建。 添加索引API为异步接口,查询索引是否添加成功,请使用查询Job状态API。 细粒度权限开启时使用子账号创建
供电管理图模板 操作场景1:供电范围查询。 包含的子操作: 查找位于变电站中的母线。 查找某根母线的供电范围。 查找某根母线供电范围内的用户点。 操作步骤:您只需要单击运行键,如有弹框,在弹框内选择母线值,运行后即可在画布显示效果图。 操作场景2:停电故障分析。 包含的子操作: 从停电用户点回溯定位故障点。
Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选 说明 类型 取值范围 statistics 否 是否仅输出总的统计量结果: true:仅输出总的统计数量。 false:输出各点对应三角形数量。 Boolean true或false,默认为true。 使用说明 不考虑边的方向以及多边情况。
并进行实名认证。 注册华为云后,如果需要对GES资源进行精细管理,请使用IAM服务创建IAM用户及用户组,并授权,以使得IAM用户获得具体的操作权限。具体内容请参考GES资源。 注册华为云账号 如果您已完成华为云账号注册,可跳过该步骤。 登录华为云官方网站。 单击华为云官网右上角“注册”进入注册页面。
Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。 参数说明 无。 示例 单击运行,计算图的度数关联度,JSON结果会展示在查询结果区。 父主题:
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入路径的起点ID String -
单个续费:在资源页面找到需要续费的资源,单击操作列的“续费”。 图2 单个续费 批量续费:在资源页面勾选需要续费的资源,单击列表左上角的“批量续费”。 图3 批量续费 选择图实例的续费时长,判断是否勾选“统一到期日”,将图实例到期时间统一到各个月的某一天(详细介绍请参见统一包年/包月资源的到期日)。确认配置费用后单击“去支付”。
执行成功时,字段可能为空。 执行失败时,用于显示错误码。 jobId String 执行算法任务ID。请求失败时,该字段为空。 说明: 可以查询jobId查看任务执行状态、获取返回结果,详情参考Job管理API。 响应示例 状态码: 200 响应成功示例 Http Status Code:
连通分量算法(Connected Component) 概述 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly connected component)。连通分量算法(Connected
紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。 适用场景 紧密中心度算法(Closeness
Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。 适用场景 聚类系数算法(Cluster
Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。 参数说明
sources 否 查询的起始节点ID集合 String - 标准csv格式,ID之间以英文逗号分隔,例如:“Alice,Nana” n 否 枚举满足过滤条件的圈的个数上限 Int [1,100000] 100 statistics 否 是否输出所有满足过滤条件的圈的个数 Boolean
描述 Property名称 属性的名称,长度限制为1到256位,且不能包含<,>,&和ASCII码为14,15,30的特殊字符。 基数 数据的复合类型。 单值:表示该属性的数据是一个单值,如一个数字或一个字符串。 多值:表示该属性的数据由多个值组成,不同的值用分号分隔。可勾选是否允许重复值。
Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一步推测两点集合之间的潜在关系和联系程度。 适用场景 点集共同邻居算法适用于进行关系发掘、产品/好友推荐等图分析技术。
edge:所有边,仅第一层filter可用,使用方式与vertex类似 后一层的查询操作以前一层的查询结果为输入: 若前一层的结果是点,则对应的操作可以有(inV,outV,bothV,in,out,both)。 若前一层的结果是边,则对应的操作可以有(inV,outV,bothV)。 vertex_filter
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1