检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下线Region:华为云全部Region。 下线影响 ModelArts自动学习-文本分类正式下线后,所有用户将无法使用自动学习的文本分类功能创建项目,但仍可查看历史使用文本分类功能创建的作业。 如您有任何问题,可随时通过工单或者服务热线(4000-955-988或950808)与我们联系。 感谢您对华为云的支持!
通过CloudShell登录到Linux工作页面,检查GPU工作情况: 通过输入“nvidia-smi”命令,查看GPU工作是否异常。 通过输入“nvidia-smi -q -d TEMPERATURE”命令, 查看TEMP参数是否存在异常, 如果温度过高,会导致训练性能下降。 父主题: 训练作业性能问题
信息。 单击“提交”,AI Gallery的运营人员将会审核您的申请,后续您可以在“我的Gallery > 合作伙伴”里查看审核进展以及审核结果。 图1 查看审核进度 父主题: 合作伙伴
的输入路径或输出路径。 图1 导出到OBS 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。 在“数据集概览页”,单击右上角“导出历史”,在弹出的“任务历史”对话框中,可以查看该数据集之前的导出任务历史。 图2 任务历史 父主题: 导出ModelArts数据集中的数据
理部署的在线服务详情页面内有调用次数详情,单击可查看该在线服务的调用次数随时间详细分布的情况。如果想进一步通过CES云监控查看ModelArts的在线服务和对应模型负载运行状态的整体情况,需要给子账号授予CES权限。 如果只是查看监控,给子账号授予CES ReadOnlyAccess权限即可。
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图1 修改ChatGLMv3-6B tokenizer文件 图2 修改ChatGLMv3-6B tokenizer文件
Gallery”。 选择“资产集市 > 数据集”,进入数据页面,该页面展示了所有共享的数据集。 搜索业务所需的数据集,请参见查找和收藏资产。 单击目标数据集进入详情页面。 在详情页面可以查看数据集的“描述”、“预览”、“限制”、“版本”和“评论”等信息。 在详情页面单击“下载”。弹出“选择云服务区
处理方法1 在ModelArts管理控制台,选择“权限管理”。 在用户名对应的“授权内容”列,单击“查看权限”,确认用户的委托权限是否已包含Tenant Administrator。 图1 查看委托权限详情 是,重新“启动”边缘服务,若还是“异常”则联系技术支持处理。 否,执行下一步,给用户添加委托权限。
登录ModelArts管理控制台,在左侧菜单栏中选择“AI专属资源池 > 弹性集群 Cluster”,在“弹性集群”页面,选择“Lite资源池”页签,查看资源池列表。 在资源池列表中,单击操作列的“ > 退订”,跳转至“退订资源”页面。 根据界面提示,确认需要退订的资源,并选择退订原因。 确
模型? 什么是区域、可用区? 在ModelArts中如何查看OBS目录下的所有文件? ModelArts数据集保存到容器的哪里? ModelArts支持哪些AI框架? ModelArts训练和推理分别对应哪些功能? 如何查看账号ID和IAM用户ID ModelArts AI识别可以单独针对一个标签识别吗?
增量训练 分布式训练 训练加速 训练高可靠性 查看训练结果和日志 查看训练作业详情 训练作业运行中或运行结束后,可以在训练作业详情页面查看训练作业的参数设置,训练作业事件等。 查看训练作业日志 训练日志用于记录训练作业运行过程和异常信息,可以通过查看训练作业日志定位作业运行中出现的问题。
训练任务。 单击“返回模型训练”跳转到微调大师页面,可以查看训练作业状态。当“状态”为“训练完成”时,表示微调任务完成。 单击操作列的“查看模型”跳转到微调获得的新模型的详情页面。 单击操作列的“任务详情”可以在弹窗中查看“训练信息”、“训练日志”和“指标效果”。 单击操作列的“更多
的输出参数名称(一般设置为“train_url”),以及输出数据的存储位置。 训练作业运行成功之后,在训练作业列表中,您可以单击作业名称,查看该作业的详情。在“日志”页签搜索输入输出参数名称获取参数信息。 如果需在训练中获取“train_url”、“data_url”和“test
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件
件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B tokenizer文件