检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
作。 停止弹性节点Server:单击“停止”,在弹出的确认对话框中,确认信息无误,然后单击“确定”。只有处于“运行中/停止失败”状态的弹性节点Server可以执行停止操作。 停止服务器为“强制关机”方式,会中断您的业务,请确保服务器上的文件已保存。 父主题: Lite Server资源管理
资源超分对在ModelArts的Notebook实例有什么影响? Notebook超分,是指一个节点中CPU、内存共享的场景。为了充分利用资源,在专属池中存在超分情况。 举例:一个专属池中有1个8U64G的CPU节点,如创建2U8G规格的Notebook,因为超分最多可启动 8U/(2U*0
日志提示“Please upgrade numpy to >= xxx to use this pandas version” 问题现象 在安装其他包的时候,有依赖冲突,对numpy库有其他要求,但是发现numpy卸载不了。出现如下类似错误: your numpy version
出现该问题的可能原因如下: 对应python包使用错误,该python包确实没有对应的变量或者方法 第三方pip源中的python包版本更新,导致在训练作业中安装的python包的版本可能也会发生变化。如训练作业之前无此问题,后面一直有此问题,则考虑是此原因。 处理方法 通过Notebook调试。
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
x) 关闭数据预处理开关,可能会影响性能。 NPURunConfig(enable_data_pre_proc=false) 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
供其他AI开发者使用,实现资产共享。 模型资产上架 登录AI Gallery,选择右上角“我的Gallery”。 在左侧“我的资产 > 模型”下,选择未发布的模型,单击模型名称,进入模型详情页。 在模型详情页,单击右侧“发布”,在发布模型页面编辑发布信息后,单击“发布”。 表1
dist/AscendModelNano-0.1.0-py3-none-any.whl #安装 模型剪枝 可以在Huggingface开源社区获取需剪枝的模型权重或者获得业务上已预训练好的模型权重,通过AscendModelNano工具进行FASP剪枝。 CUDA_VISIBLE_DEVICES=0
算能力不足,无法与云端相比。在此情况下,通过在靠近终端设备的地方建立边缘节点,将云端计算能力延伸到靠近终端设备的边缘节点,从而解决上述问题。 智能边缘平台(Intelligent EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满
isn't open for writing’ 原因分析 出现该问题的可能原因如下: moxing对高版本的pandas兼容性不够。 处理方法 在适配OBS路径后,读取文件模式从‘r’改成‘rb’,然后将mox.file.File的'_write_check_passed'属性值改为‘True’,参考如下代码。
用户通过ECS获取基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过ECS中构建新镜像的方式来部署训练环境。可以在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。在构建镜像的过程中会下载完整的模型代码、执行环境,然后自动进行NPU适配,并将以上源码和环境打包至镜像中。
用户通过ECS获取基础镜像步骤拉取基础镜像并上传至SWR中。随后可通过ECS中构建新镜像的方式来部署训练环境。可以在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。在构建镜像的过程中会下载完整的模型代码、执行环境,然后自动进行NPU适配,并将以上源码和环境打包至镜像中。
Step2 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 表1 需要填写的环境变量 环境变量 示例值 参数说明 GPUS_PER_NODE 8 必须填写。根据资源规格每个节点上NPU的数量填写。 DATA /home/ma-us
供了分布式训练调测具体的代码适配操作过程和代码示例。 示例:创建DDP分布式训练(PyTorch+NPU):针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。 基于开发环境使用SDK调测训练作业:介绍如何在Mod
Step2 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 表1 需要填写的环境变量 环境变量 示例值 参数说明 GPUS_PER_NODE 8 必须填写。根据资源规格每个节点上NPU的数量填写。 DATA /home/ma-us
当前仅贵阳一区域支持选择本案例中的规格及镜像。 操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间 > Notebook”,进入“Notebook”管理页面。 在“Notebook”页面,单击“创建Notebook”。 在“创建Notebook”页面,配置相关信息,单击“立即创建”,确认信息无误后,单击“提交”。
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6
rser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6