检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型API的适配封装,提供统一的接口快速地调用CSS模型embedding能力。 初始化:根据相应模型定义Embedding类。例如,使用华为CSS Embedding为:Embeddings.of(Embeddings.CSS);。 import com.huaweicloud
Key ID)/SK(Secret Access Key)加密调用请求。 Token认证 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Toke
按需方式的API接口不可调用。 无法开通服务。 服务到期 包年包月服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
API凭证”页面,获取user name、domain name、project id。 project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project id。 图1 查看盘古服务区域 图2 获取user name、domain
什么是盘古大模型 盘古大模型致力于深耕行业,打造多领域的行业大模型和能力集。其核心能力依托于盘古大模型套件平台,该平台是华为云推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发与应用平台。平台提供了包括盘古大模型在内的多种大模型服务,支持大模型的定制开发,并提供覆盖全生命周期的大模型工具链。
Decrypt failed报错 报错原因:模型训练过程中,训练日志出现“Decrypt failed”报错,表示解密失败。 解决方案:请联系华为云排查环境变量ak、sk。 图4 Decrypt failed报错 父主题: 训练盘古大模型
在“服务管理”页面,单击所需API的“查看详情”按钮。 图1 服务管理 在“服务列表”中选择需要调用的模型,单击操作栏中的“调用路径”,复制对应模型的API请求地址。 图2 获取API请求地址 获取Token。 在调用盘古API过程中,Token起到了身份验证和权限管理的作用。 在调用盘古API前,需要先使用“获取T
sh脚本主要用于安装docker、hdad和k3s,请联系华为工程师获取。 pkg-path是步骤2中整合的安装包文件目录。 host-ip是设备在集群中的ip,一般为内网ip。 node-type是集群节点类型。其中,worker表示工作节点,controller表示主控节点。 在服务器执行如下命令,判断docker是否安装成功。
使用Postman调用API 获取API请求地址。 在“服务管理”页面,单击所需API的“查看详情”按钮。 图1 服务管理 在“模型列表”中选择需要调用的模型,单击操作栏中的“调用路径”,复制对应模型的API请求地址。 图2 获取API请求地址 获取Token。 在调用盘古API过程中,Token起到了身份验证和权限管理的作用。
理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT中获得的知识,生成准确而全面的回答。然而,依赖通用大模型自身知识来回答问题,在某些垂直领域应用中会面临挑战: 通用大模型的原始训
型的能力,引导模型生成更准确且更具针对性的输出,从而提高模型在特定任务上的性能。在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造,如果提示词模板满足不了使用需求,可再单独创建。 提示词模板可以在平台“应用开发 > 提示词管理 > 预置提示词”中获取。 图1
API的详细请求参数、响应参数介绍请参见AI助手API参数说明。 打开Postman,新建一个POST请求,在地址栏填写获取AI助手API调用地址获取的调用地址。 在Header中配置IAM Token信息。 请求Header参数名为X-Auth-Token,参数值为获取Token获取的token值。
of("pangu", llm_config) pangu_llm.ask(messages).answer 带人设的问答:支持在LLM配置项中设置人设,在LLM问答时系统会自动加上该人设,同时支持以上问答功能(暂不支持GALLERY三方模型)。 import sys from pangukitsappdev
TestAgentCustom { // agent private static Agent panguAgent; // 工具map。在分步骤执行agent场景时,需要调用tool 的run方法来执行tool private static LinkedHashMap<String
提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词的统一管理。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 单击页面右上角“创
过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时需要指明“上面的xxx”。例如:“为什么你认为上面的xxx是xxx类别?为什么上面的xxx不是xxx类别?”,否则模型会认为用户反问是
这种情况可能是由于以下几个原因导致的,建议您依次排查: Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。
PANGU); llm.ask(buildMultiTurnChatMessages()).getAnswer(); 带人设的问答:支持在LLM配置项中设置人设,在LLM问答时系统会自动加上该人设,同时支持以上问答功能(暂不支持GALLERY三方模型)。 import com.huaweicloud
run("帮我定个今天下午3点到8点的A02会议室"); Agent的运行时会进行自我迭代,并且选择合适的工具,在日志中打印最终的执行结果: 用户: 帮我定个今天下午3点到8点的A02会议室 助手: A02会议室在今天下午3点到8点已经被预订了。是否需要为您预订其他时间段或者其他会议室? - 步骤1:
该问题将愈加显著。 当然,如果您的可用数据很少,也可以采取一些方法来扩充您的数据,从而满足微调要求,比如: 数据增强:在传统机器学习中,可以通过简单的重复上采样方式来扩充数据,但该方法不适用于大模型微调的场景,这将导致模型的过拟合。因此可以通过一些规则来扩充数据,比如:同义词替