检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在使用通用图像分类工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练图像分类模型,并查看训练的模型准确率和误差的变化。
在使用无监督车牌检测工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,选择训练模型和车辆场景,即可开始训练车牌检测模型,并查看训练的模型准确率和误差的变化。
练模型操作是基于您选择的训练数据集。 选择数据 标注数据(可选) 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 标注数据 训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类。 针对已标注数据,文本分类的标注对象和标签在一个文本
在使用热轧钢板表面缺陷检测工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练热轧钢板表面缺陷检测模型,并查看训练的模型准确率和误差的变化。
数据集状态 上传的训练数据可以是已标注的数据,也可以是未标注的数据。 您可以根据自身业务选择“数据集状态”是“已标注数据集”还是“未标注数据集”。 数据集模板可在选择“数据集状态”后,单击下方的“文本分类已标注数据模板”或“文本分类未标注数据模板”,下载数据集模板至本地查看。 本样例
上传模板图片 在使用多模板分类工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件
工作流介绍 工作流简介 功能介绍 支持用户自定义多个文字识别模板,通过模型训练,自动识别图片所需使用的模板,从而支持从大量不同板式图像中提取结构化信息。 适用场景 用户认证识别 识别证件中关键信息,节省人工录入,提升效率,降低用户实名认证成本,准确快速便捷。 快递单自动填写 识别
使用多模板工作流开发应用 ModelArts Pro的文字识别套件提供了多模板工作流,通过工作流指引支持自定义多个文字识别模板,通过模型训练,自动识别图片所属模板,从而支持从大量不同板式图像中提取结构化信息。 本章节提供一个票证类型的样例,帮助您快速熟悉使用文字识别套件中的多模板
编辑应用 对于已经创建的模板应用,您可以修改模板的配置信息以匹配业务变化。 前提条件 已存在创建的模板应用。 编辑模板配置信息 登录“ModelArts Pro>文字识别套件”控制台。 默认进入“应用开发>工作台”页面。 在“我的应用”页签下,选择应用并单击“操作”列的“查看”。
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片,且数据集中每个标签要有大于5个样本。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732
多模板分类工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 编辑应用 自定义字段类型 删除应用 父主题: 文字识别套件
基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732
应不少于20张,样本数达1万张以上性能更优。 为了准确率,建议数据集中标注数据占总数据量的10%,用于测试模型,其余90%无需标注。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732
基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工作流只支持上传未标注数据,将待标注的内容放在一个文本文件内。 上传数据至OBS 使用ModelArts Pro进行应用开发时,您需要将数据上传至OBS桶中。
评估应用 训练模板分类模型后,需要对模板分类器和模板图片进行评估和考察。您可以通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”
标签。 数据格式 保证图片质量:不能有损坏的图片。 目前支持的格式包括JPG、JPEG、PNG、BMP。 训练数据集 本样例训练数据集使用未标注数据。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。
为保证训练效果,需要准备至少20张待训练的图片数据,低于20张工作流数据处理会报错。此外,为优化模型,建议对金相图像的第二相边界标注清晰。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example │ IMG_20180919_114732
基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类,其他语种的文本分类请使用多语种文本分类工作流。 针对