检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型”中可以查看当前空间和预置的模型资产,如果有多个空间的访问权限,可切换空间查看其他空间内的资产。 在“本空间”页签可查看模型资产,并可对模型进行删除操作。单击模型名称可进入详情页面查看模型的基础信息。 在“预置”页签可查看用户可使用的各类模型的预置资产。 图1 查看预置模型预置模型
Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。 针对“零码”开发者(无代码开发经验),
权限管理 如果您需要对华为云上购买的盘古大模型资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可
Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存起来,避免频繁调用。 如果您的华为云账号已升级
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:
模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比
高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 在ModelArts
生成的内容结尾必须要引导观众购买; 6.生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样;
工作空间功能旨在为用户提供灵活、高效的资产管理与协作方式。平台支持用户根据业务需求或团队结构,自定义创建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
用户发布的数据集会被纳入数据资产,集中存储在空间资产中。平台为数据资产提供了一系列管理功能,包括查看数据集的详细信息、追踪操作记录、以及数据集的删除管理等。这不仅便于用户对已发布数据集的集中管理,还可帮助用户了解每个数据集的使用情况,从而简化数据资产的维护更新流程。通过这样的统一管
型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以
提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。
Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 大模型微调训练类问题
针对调用的大模型,平台提供了统一的管理功能。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用
在不同场景中的最大化利用。为进一步优化资源的管理,平台还提供了多种角色权限体系。用户可以根据自身角色从管理者到各模块人员进行不同层级的权限配置,确保每个用户在其指定的工作空间内,拥有合适的访问与操作权限。这种精细化的权限管理方式,既保证了数据的安全性,又提高了资源的高效利用。 在
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。