检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快
于颜料来说,各种深度学习框架已经提供了我们所需的各种颜料。我们要做的,就是利用不同的颜料,在空白的纸上,一笔一划画出我们所需的网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中的
大多数优化算法的先决条件都是我们知道精确的梯度或是Hessian 矩阵。在实践中,通常这些量会有噪声,甚至是有偏的估计。几乎每一个深度学习算法都需要基于采样的估计,至少使用训练样本的小批量来计算梯度。在其他情况,我们希望最小化的目标函数实际上是难以处理的。当目标函数不可解时,通常
卷积操作就是filter矩阵跟filter覆盖的图片局部区域矩阵对应的每个元素相乘后累加求和。
Dropout(Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法,计算方便但功能强大。在第一种近似下,Dropout可以被认为是集成大量深层神经网络的实用Bagging方法。Bagging涉及训练多个模型,并在每个测试样本上评估多个
在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好
即计算m 个从数据生成分布中出来的训练样本上的估计参数和真实参数之间差值的平方。有参均方误差估计随着m 的增加而减少,当m 较大时,Cramér-Rao 下界(Rao, 1945; Cramér, 1946) 表明不存在均方误差低于最大似然学习的一致估计。因为这些原因(一致性和统
数据不是收集的,是自己生成的,好吧~一个简单的例子学习用的没关系%matplotlib inline这个是为了让在jupyter在浏览器里能够显示图像。生成y=2x+1的随机数据,数据加背景噪声限值0.4生成等差数列,100个x_data=np.linspace(-1,1,100)y_data=2*x_data+1
虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解的原因。但是,在这种情况下,我们可以看到算法的使用以及他们手工制作的规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因此,深度学习要求包括GPU。这是它
可以是,一个单独的数/标量,或一个一维数组/向量,一个二维数组/矩阵,或三维四维多维等等。形式上来统一化,可以叫做:0阶张量/标量/Scalar, 1阶张量/向量/vector, n阶张量/n维数组流,表示张量数据流动/计算的过程。每一个张量有一个唯一的类型,运算的类型不匹配会报
算能力的增速,机器学习应用每个样本只使用一次的情况变得越来越常见,甚至是不完整地使用训练集。在使用一个非常大的训练集时,过拟合不再是问题,而欠拟合和计算效率变成了主要的顾虑。读者也可以参考 Bottou and Bousquet (2008a) 中关于训练样本数目增长时,泛化误差上计算瓶颈影响的讨论。
入对应不同的输出,那么训练误差可能会大于零)。最后,我们也可以将参数学习算法嵌入另一个依所需增加参数数目的算法来创建非参数学习算法。例如,我们可以想象一个算法,外层循环调整多项式的次数,内存循环通过线性回归学习模型。理想模型假设我们能够预先知道生成数据的真实概率分布。然而这样的模
训练模型跑出来了后,要使用,但是我们没有数据了,因为数据都拿去训练了。 所以课程中,随机挑了一条训练数据来应用到模型里来使用。 这样是不好的,因为就像学习训练时将考试题都让你做过一遍,再让你考试就不公平了,类似于作弊了。 应该是考你运用学到的知识,来做没做过的题。 那比较好的做法呢,是有一些数据,把这些数据分一分,
TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief 。Tensorflow拥有多层级结构,可部
在深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年
导论里面说了人工智能用来下围棋打游戏,已经完全超越了人类,但是那又怎么样呢?还能不能做点更有意义的事情?探索宇宙,非常有意义吧!通过人工智能在天量的天文探测数据中挖掘到一个小版的**。然后回到我们日常的社会生活之中,语音处理,比如语音输入,生活助理,拨打广告推销电话等等。图像处理。还有
还有一个是vggnet,他的问题是参数太大。深度学习的问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习的开发框架。先整了了Theano,开始于2007年的加拿大的蒙特利尔大学。随着ten
学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 1.1.1 区别 1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层
有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,
这就要求我们选择一个迭代数值优化过程,如梯度下降等。组合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下