检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
home/ma-user/work”目录下的数据,在Notebook实例停止或重启后,会被保留。 为避免重启,请勿在开发环境中进行重型作业训练,如大量占用资源的作业。 父主题: 数据存储
在Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
DatasetPlaceholder(name="input_data") # 创建训练作业 job_step = wf.steps.JobStep( name="training_job", title="图像分类训练", algorithm=wf.AIGalleryAlgorithm(
是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本
导入模型提示模型或镜像大小超过限制 问题现象 在导入模型时,提示模型或镜像大小超过限制。 原因分析 如果使用的是OBS导入或者训练导入,则是基础镜像、模型文件、代码、数据文件和下载安装软件包的大小总和超过了限制。 如果使用的是自定义镜像导入,则是解压后镜像和镜像下载文件的大小总和超过了限制。
配置授权 功能介绍 配置ModelArts授权。若没有授权,ModelArts训练管理、开发环境、数据管理、在线服务等功能将不能正常使用。该API支持管理员给IAM子用户设置委托,支持设置当前用户的访问密钥。调用该API需要在IAM系统里配置Security Administrator权限。
在模型广场页面,ModelArts Studio大模型即服务平台提供了丰富的开源大模型,在模型详情页可以查看模型的详细介绍,根据这些信息选择合适的模型进行训练、推理,接入到企业解决方案中。 访问模型广场 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts Studio”进入ModelArts
用户名密码认证模式 本模式支持OBS管理、训练管理、模型管理、服务管理的鉴权。 示例代码 账号与用户的概念介绍,请参见IAM基本概念。获取您的账号、用户名等信息,请参见获取用户名、用户ID、项目名称、项目ID。 使用账号认证 “username”填写您的账号名。 1 2 from
在ModelArts中创建Notebook、创建训练作业、创建推理在线服务时,对这些任务配置标签。 在ModelArts的Notebook中添加标签。 可以在创建Notebook页面添加标签,也可以在已经创建完成的Notebook详情页面的“标签”页签中添加标签。 在ModelArts的训练作业中添加标签。
如何使用API接口获取订阅算法的订阅id和版本id? 调用API接口使用“我的订阅”方式创建训练作业时,请求参数需要填写算法的订阅id(algorithm.subscription_id)和版本id(algorithm.item_version_id)。可调用如下接口获取相关信息,如下以北京四为例:
使用AI Gallery在线推理服务部署模型 AI Gallery支持将训练的模型或创建的模型资产部署为在线推理服务,可供用户直接调用API完成推理业务。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持在线推理。如果模型的“任务类型”是除“文本问答”和“文本
注意:版本不可以出现例如01.01.01等以0开头的版本号形式。公共参数 source_job_version 否 String 来源训练作业的版本,模型是从训练作业产生的可填写,用于溯源;如模型是从第三方元模型导入,则为空。默认值为空。非模板参数 source_location 是 String
SDK)是对ModelArts服务提供的REST API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松管理数据集、启动AI训练以及生成模型并将其部署为在线服务。 ModelArts SDK目前只提供Python语言的SDK,同时支持大于3.7.x版本且小于3.10
TFServing框架、Triton框架为例,介绍如何迁移到推理自定义引擎。 TensorFlow Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP
object_type="directory") # 通过JobStep来定义一个训练节点,并将训练结果输出到OBS job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划
"quota" : 10, "min_quota" : -1, "name_cn" : "自动学习(图像分类、物体检测、声音分类)训练时长", "unit_cn" : "分钟", "name_en" : "ExeMLtraining duration
部署上线时,出现错误 在部署上线前,您需要基于训练后的模型编写配置文件和推理代码。 如果您的模型存储路径下,缺少配置文件“confi.json”,或者缺少推理代码“customize_service.py”时,将出现错误,错误信息如下图所示。 解决方案: 请参考模型包规范写配置文
安装Gallery CLI配置工具 场景描述 Gallery CLI配置工具支持将AI Gallery仓库的资产下载到云服务端,便于在云服务本地进行训练、部署推理。 Gallery CLI配置工具支持将单个超过5GB的文件从本地上传至AI Gallery仓库中。 约束限制 Gallery
s控制台的“算法管理 > 我的订阅”页面。 在“算法管理 > 我的订阅”页面,选择并展开订阅的目标算法。在版本列表中,单击“创建训练作业”跳转至创建训练作业页面。 取消或找回订阅的算法 当不需要使用AI Gallery中订阅的算法时,可以取消订阅该算法。取消订阅后,ModelArts管理控制台“算法管理
Manifest管理概述 在ModelArts使用过程中,需要做数据标注、模型训练、推理、数据集管理、市场发布等业务,这些业务都基于数据集进行的。为了规范对数据集的使用,适配各个使用场景,同时兼顾数据集管理的灵活性,本文档描述数据集管理的接口和描述规范——Manifest文件。