已找到以下 213 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 什么是推荐系统 - 推荐系统 RES

    用户根据场景选择不同推荐实体。 独立排序模块 独立基于CTR预估排序打分模块,支持个性化排序能力。 如何访问RES 您可以通过以下任何一种方式访问RES。 管理控制台 管理控制台是基于浏览器可视化界面。通过管理控制台,您可以使用直观界面进行相应操作。使用方式请参见《推荐系统用户指南》。

  • 猜你喜欢主要应用场景是什么? - 推荐系统 RES

    猜你喜欢主要应用场景是什么? 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户长短期行为表现出来兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 父主题: 智能场景

  • 排序策略-离线排序模型 - 推荐系统 RES

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

  • 召回策略 - 推荐系统 RES

    topK 用户最感兴趣排序在前K个物品。 行为 行为类型:用户感兴趣行为类型。 权重值:行为初始权重。 衰减系数:用于衰减行为初始权重系数。 有效时间:用户配置行为发生时间与当前时间间隔,以小时为单位。系统只处理在该时间范围内行为记录。 基于用户相似度实时召回 基于用

  • 智能场景简介 - 推荐系统 RES

    针对对应场景,由RES根据场景类型预置好对应智能算法,为匹配场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。

  • 应用场景 - 推荐系统 RES

    买了又买等推荐场景,但各个子场景运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。

  • 创建自定义场景 - 推荐系统 RES

    描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表7 响应Body参数 参数 参数类型

  • 创建智能场景 - 推荐系统 RES

    据用户长短期行为表现出来兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定物品关联推荐,根据已关联物品对相关内容和行为进行挖掘,网状匹配相关联物品,进行有关联度推荐。 热门推荐主要应用于当前用户浏览最多物品内容,如实时搜索量前几新闻或者物品。

  • 创建数据源 - 推荐系统 RES

    创建数据源 功能介绍 在指定工作空间下面创建一个新数据源。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/data-sources 表1 路径参数 参数 是否必选

  • 与其他云服务关系 - 推荐系统 RES

    一入口鉴权功能和OBS与DIS委托授权。IAM更多信息请参见《统一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者一站式开发平台,排序策略使用Modelarts深度学习计算能力训练得到排序模型。ModelArts更多信息请参见《ModelArts服务文档》。

  • 更新自定义场景内容 - 推荐系统 RES

    描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表6 响应Body参数 参数 参数类型

  • 与其他云服务关系 - 推荐系统 RES

    一入口鉴权功能和OBS与DIS委托授权。IAM更多信息请参见《统一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者一站式开发平台,排序策略使用Modelarts深度学习计算能力训练得到排序模型。ModelArts更多信息请参见《ModelArts服务文档》。

  • 排序策略 - 推荐系统 RES

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

  • 修改数据源内容 - 推荐系统 RES

    描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表10 响应Body参数 参数 参数类型

  • 查询数据源列表 - 推荐系统 RES

    离线计算规格。 nearline String 实时计算规格。 rank String 深度学习计算规格。 online_tps Integer 在线服务最大并发数。 请求示例 查询当前工作空间下数据源 /v2.0/testuuidxxxxxxxxxxxxxxxxxxxxxxxx/

  • 自定义场景简介 - 推荐系统 RES

    间是独立。即根据不同离线计算得到候选集以及相关参数,提供不同推荐服务。 在线服务 效果评估 指用于通过推荐系统推荐出去结果集并利用trace_id回流到推荐系统行为点击率、转化率等指标的计算。 效果评估 父主题: 自定义场景

  • 查询场景列表 - 推荐系统 RES

    离线计算规格。 nearline String 实时计算规格。 rank String 深度学习计算规格。 online_tps Integer 在线服务最大并发数。 请求示例 查询当前工作空间下场景列表 /v2.0/testuuidxxxxxxxxxxxxxxxxxxxxxxxx

  • 查询场景详情 - 推荐系统 RES

    参数 参数类型 描述 offline String 离线计算规格。 nearline String 实时计算规格。 rank String 深度学习计算规格。 online_tps Integer 在线服务最大并发数。 请求示例 查询场景详情 /v2.0/testuuidxxxxxx

  • 提交排序任务API - 推荐系统 RES

    1]之间,是机器学习领域里常用二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间关系,无需人工经验干预,同时能够解决组合特征稀疏问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机改进版

  • 策略参数说明 - 推荐系统 RES

    特征向量之间使用神经网络核来计算相互关系时,该神经网络结构。每一层节点数取值范围为[1,100],深度不超过5层。默认40,5。 是否移除因子分解机 (is_drop_fm) 是 Boolean 是否移除模型架构中因子分解机部分,值为True则蜕变为带有核函数DNN。取值true/false,默认false。