已找到以下 10000 条记录
  • 深度学习和机器学习的区别

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: 运气男孩
    685
    2
  • 什么是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: Amber
    11519
    6
  • 深度学习之设计矩阵

    表示猫,等等。通常当工作在包含观测特征的设计矩阵 X 的数据集时,我们也会提供一个标签向量 y,其中 yi 表示样本i 的标签。当然,有时标签可能不止一个数。例如,如果我们想要训练语音模型转录整个句子,那么每个句子样本的标签是一个单词序列。正如监督学习和无监督学习没有正式的定义,数据集或者经验也没有严格的区分。

    作者: 小强鼓掌
    1663
    1
  • 数据集服务操作流程

    通过数据集服务平台,进行数据集的发布、授权,用户可以浏览、查阅、订阅和下载数据集,用于不同场景的模型训练。

    播放量  6088
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    深度学习是支持人工智能发展的核心技术,云服务则是深度学生的主要业务之一。深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络

    作者: QGS
    946
    0
  • 火灾检测 数据集

      原文链接:https://blog.csdn.net/jacke121/article/details/122030308 火灾数据集: fire-smoke - 飞桨AI Studio 转自:https://www.csdn.net/tags/MtTaEgysNTM2NTA2LWJsb2cO0O0O

    作者: 风吹稻花香
    发表时间: 2022-04-13 18:17:15
    447
    0
  • Facades数据集

    像和标注数据。与Facades数据集相比,Cityscapes数据集更适用于研究城市场景的语义分割。 ADE20K数据集:ADE20K数据集是一个包含超过15000张图像和分割标注的大型场景理解数据集。与Facades数据集相比,ADE20K数据集涵盖了更广泛的场景和类别,并提供了更多样的分割标签。

    作者: 皮牙子抓饭
    发表时间: 2023-10-22 22:24:09
    30
    0
  • 网站搭建与部署知识课程

    商品玲琅满目的电子商城,小到层出不穷的网店,是如何搭建和部署的吗? 华为云微认证《搭建麦进斗电子商务网站》 麦进斗是一套专业开源的电子商务系统,具有模块化架构体系,功能丰富,设计灵活,常被用于建设多用途和适用面的电子商务网站。本认证通过弹性云服务器快速实现麦进斗电子商务网站的搭建

  • 深度学习模型结构

    者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: QGS
    646
    2
  • 深度学习应用开发》学习笔记-01

    人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快

    作者: 黄生
    1139
    5
  • 深度学习之过拟合

    化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,在深度学习中我们很少使用经验风险最小化。反之,我们会使用一个稍有不同的方法,我们真正优化的目标会更加不同于我们希望优化的目标。

    作者: 小强鼓掌
    335
    1
  • 深度学习之正切传播

    式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不改变网络输出的转换,编码其先验知识。不同的是在数据集增强的情况下,网络显式地训练正

    作者: 小强鼓掌
    345
    1
  • 深度学习的挑战

    深度学习挑战 虽然深度学习具有令人印象深刻的能力,但是一些障碍正在阻碍其广泛采用。它们包括以下内容: •技能短缺:当O'Reilly公司的调查询问是什么阻碍人们采用深度学习时,受访者的第一个反应就是缺乏熟练的员工。2018年全球人工智能人才报告表明,“全世界大约有22,000名获

    作者: 建赟
    1653
    2
  • 深度学习VGG网络

    为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网

    作者: 我的老天鹅
    579
    16
  • 深度学习深度前馈网络

           深度前馈网络 (deep feedforward network),也叫作前馈神经网络 (feedforward neural network) 或者多层感知机 (multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数

    作者: 小强鼓掌
    1256
    4
  • 深度学习的概念

    深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。 深度学习学习样本数据的内在规律和表示层次,

    作者: 某地瓜
    1859
    1
  • 文字识别案例 - 利用OCR文字识别提高院前急救电子病历录入效率

    身份证号调用云端电子健康档案接口,获取电子健康档案信息填充到电子病历中。使用场景:    电子病历APP:识别身份证号码,获取电子健康档案信息填充到电子病历   脑卒中、胸痛管理企业号应用:识别姓名和身份证号,填充到卒中、胸痛患者的基本信息中方案截图:  使用规模:    日调用量50/次左右使用收益:

    作者: brucepeng
    16750
    2
  • 机器学习深度学习的比较

    虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解的原因。但是,在这种情况下,我们可以看到算法的使用以及他们手工制作的规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因此,深度学习要求包括GPU。这是它

    作者: @Wu
    541
    1
  • 《Python大规模机器学习》— 3.1.2 ​ 森林覆盖类型数据集

    3.1.2 森林覆盖类型数据集由Jock A.Blackard、Denis J.Dean博士、Charles W.Anderson博士和科罗拉多州大学捐赠的森林覆盖类型数据集包含581 012个实例和从海拔到土壤类型等54个类别变量,能够预测七种森林覆盖类型(所以是个多类问题)。

    作者: 华章计算机
    发表时间: 2019-06-12 22:58:59
    3305
    0
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的

    作者: 初学者7000
    877
    3