已找到以下 10000 条记录
  • 深度学习之随机梯度下降

         在深度学习之前,学习非线性模型的主要方法是结合核策略的线性模型。很多核学习算法需要构建一个 m × m 的矩阵 Gi,j = k(x(i), x(j))。构建这个矩阵的计算量是 O(m2)。当数据集是几十亿个样本时,这个计算量是不能接受的。在学术界,深度学习从 2006

    作者: 小强鼓掌
    1324
    1
  • 深度学习应用开发》学习笔记-28

    这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的

    作者: 黄生
    837
    3
  • 深度学习应用开发》学习笔记-23

    从人的角度来看,12个特征比1个特征要复杂了很多, 但对计算机来说,无所谓。 在tf里,12元的线性回归方程的实现,比1元的线性方程的实现,代码上也只是多了一点点复杂度而已。 这就是计算机的优势。 只是最后训练的结果,为什么都是nan,像老师说的,脸都黑了哦~ 这次先到这里,请听下回分解~

    作者: 黄生
    1471
    4
  • 深度学习应用开发》学习笔记-20

    落了很长时间没学,捡起来继续。编号也忘了从哪里接上,就从20开始吧。 前面弄完了一元线性回归,现在是波士顿房价预测-多元线性回归。 数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等

    作者: 黄生
    934
    3
  • AI、机器学习深度学习的关系

    作者: andyleung
    1560
    1
  • 动手学深度学习:优化与深度学习的关系

    Smola)人工智能机器学习深度学习领域重磅教程图书亚马逊科学家作品动手学深度学习的全新模式,原理与实战紧密结合目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包

    作者: 且听风吟
    发表时间: 2019-09-04 09:40:07
    6962
    0
  • 深度学习之半监督学习

    深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin

    作者: 小强鼓掌
    749
    10
  • 深度学习应用开发》学习笔记-21

    说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```

    作者: 黄生
    1038
    2
  • 数据集-NLP

    上面发表对电影的评论。IMDB数据集是由斯坦福大学研究院整理的一套用于情感分析的IMDB电影评论二分类数据集,包含25000个训练样本和25000个测试样本,所有影评都被标记为正面或负面两种评价。IMDB数据集在TF中的读取方法与MNIST等数据集较为类似。WikiText英语词库数据(The

    作者: 黄生
    12
    1
  • 机器学习深度学习的区别是什么?

    深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 订购数据集服务 - 网络智能体

    订购数据集服务 功能介绍 外部用户在NAIE平台上订购数据集服务。 URI URI格式 POST /softcomai/datalake/v1.0/external/datacatalog/order 参数说明 无。 请求 请求样例 POST https://ipaddr:por

  • 机器学习深度学习的未来趋势

    机器学习深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1240
    2
  • 深度学习:主流框架和编程实战》——1.5 深度学习展望

    )大规模数据集的依赖性。深度学习最新的研究成果都依赖于大规模数据集和强大的计算能力,如果没有大量真实的数据集,没有相关的工程专业知识,探索新算法将会变得异常困难。4)超参数的合理取值。深度神经网络以及相关深度学习模型应用需要足够的能力和经验来合理地选择超参数的取值,如学习速率、正

    作者: 华章计算机
    发表时间: 2019-06-04 19:32:31
    6790
    0
  • 深度学习算法中的集成学习(Ensemble Learning)与深度学习的结合

    数据,深度学习可以从中学习到更加准确和鲁棒的模型。 适应复杂任务:深度学习模型可以适应各种复杂任务,包括计算机视觉、自然语言处理和语音识别等。 集成学习深度学习中的应用 集成学习可以与深度学习相结合,以提高深度学习算法的性能和鲁棒性。以下是一些常见的集成学习方法在深度学习中的应用:

    作者: 皮牙子抓饭
    发表时间: 2023-09-25 09:27:00
    61
    1
  • 数据集服务首页介绍 - 网络智能体

    右侧上方 查询数据集 :通过输入数据集的名称或描述,查询数据集。 :通过选择筛选条件,查询数据集。 新增数据集:发布数据集的入口。 右侧中下方 数据集展示在数据集服务首页正下方,默认以列表的形式展示所有的数据集并且是按数据集的名称排序,还可以切换为卡片形式展示数据集。支持展示数据集的目录。

  • 通过多任务学习改进证据深度学习

    边际似然损失,有可能导致目标预测不准确。本文的目标是通过解决梯度收缩问题来提高ENet的预测精度,同时保持其有效的不确定性估计。一个多任务学习(MTL)框架,被称为MT-ENet,被提出来实现这一目标。在MTL中,我们将Lipschitz修正均方误差(MSE)损失函数定义为另一种

    作者: 可爱又积极
    1761
    3
  • 深度学习之聚类问题

    的聚类,但是得到了一个和任务无关的不同的,同样是合理的聚类。例如,假设我们在包含红色卡车图片,红色汽车图片,灰色卡车图片和灰色汽车图片的数据集上运行两个聚类算法。如果每个聚类算法聚两类,那么可能一个算法将汽车和卡车各聚一类,另一个根据红色和灰色各聚一类。假设我们还运行了第三个聚类

    作者: 小强鼓掌
    536
    1
  • 深度学习框架MindSpore介绍

    些端云联合学习方法和框架被提出来,旨在联合多个端侧设备共同训练一个全局模型,并实现端侧隐私保护。Google率先于2016年提出了联邦学习方法和框架。杨强等又提出了横向联邦学习、纵向联邦学习、联邦迁移学习以及联邦强化学习等方法及对应的框架。端侧推理、迁移学习和联邦学习属于端云协同

    作者: 运气男孩
    887
    2
  • 口罩数据集总结,maskSet4k 带标签面罩数据集示例

    计算机视觉:图像修复-代码环境搭建-知识总结 🍊 计算机视觉:超分重建-代码环境搭建-知识总结 🍊 深度学习:环境搭建,一文读懂 🍊 深度学习:趣学深度学习 🍊 落地部署应用:模型部署之转换-加速-封装 🍊 CV 和 语音数据集数据集整理 📙 预祝各位 前途似锦、可摘星辰 🎉 作为全网 AI

    作者: 墨理学AI
    发表时间: 2022-02-18 03:51:59
    1939
    0
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

    作者: 我的老天鹅
    1892
    10