检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
ModelArts自动学习与ModelArts PRO的区别是什么? ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造的专业开
基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型
epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
使用模型 用训练好的模型预测测试集中的某个图片属于什么类别,先显示这个图片,命令如下。 1 2 3 # display a test image plt.figure() plt.imshow(test_images[9]) 图1 显示用以测试的图片 查看预测结果,命令如下。 1
Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。 M
学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南
Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类
深度诊断ECS 操作场景 ECS支持操作系统的深度诊断服务,提供GuestOS内常见问题的自诊断能力,您可以通过方便快捷的自诊断服务解决操作系统内的常见问题。 本文介绍支持深度诊断的操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations
导入和预处理训练数据集 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import
Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需任何代
Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3
通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计的是以任务形式分派的学员学习数据 自学记录统计的是学员在知识库进行自学的学习数据 统计数据统计的是具体培训资源(实操作业、考试等)的学员学习数据 父主题: 培训管理
迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据
Online实例,创建并打开一个空白工作目录,命令如下。 mkdir ai-test 使用pip安装TensorFlow等依赖包,为加快安装速度此处安装的是tensorflow-cpu,命令如下。 1 2 python3 -m pip install tensorflow-cpu matplotlib
定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。 切分点数量 定义每个特征切分点的数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。 分类阈值 区分正负例的得分阈值。
如何获得开发者认证的学习材料? 华为云开发者学堂提供在线的视频课程,在线实验,相关学习资料都可以在认证详情页面上获取。 父主题: 开发者认证课程学习常见问题
课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(
8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。