检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Dropout强大的大部分原因来自施加到隐藏单元的掩码噪声,了解这要的。这可以看作是对输入内容的信息高度智能化、自适应破坏的一种形式,而不是对输入原始值的破坏。例如,如果模型学得通过鼻检测脸的隐藏单元 hi,那么丢失 hi 对应于擦除图像中有鼻子的信息。模型必须学习另一种 hi,要么是鼻子存
式是将其加到的权重。这项技术主要用于循环神经网络 (Jim et al., 1996; Graves, 2011)。这可以被解释为关于权重的贝叶斯推断的随机实现。贝叶斯学习过程将权重视为不确定的,并且可以通过概率分布表示这种不确定性。向权重添加噪声是反映这种不确定性的一种实用的随机方法。
梯度下降和基本上所有的可以有效训练神经网络的学习算法,都是基于局部较也许能计算目标函数的一些性质,如近似的有偏梯度或正确方向估计的方差。在这些情况下,难以确定局部下降能否定义通向有效解的足够短的路径,但我们并不能真的遵循局部下降的路径。目标函数可能有诸如病态条件或不连续梯度的问题,使得梯度为目标函数
储模型参数的副本。当训练算法终止时,我们返回这些参数而不是最新的参数。当验证集上的误差在事先指定的循环次数内没有进一步改善时,算法就会终止。此过程在算法中有更正式的说明。这种策略被称为提前终止(early stopping)。这可能是深度学习中最常用的正则化形式。它的流行主要是因为有效性和简单性。
1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量
频率派的视角是真实参数 θ 是未知的定值,而点估计θˆ 是考虑数据集上函数(可以看作是随机的)的随机变量。 贝叶斯统计的视角完全不同。贝叶斯用概率反映知识状态的确定性程度。数据集能够直接观测到,因此不是随机的。另一方面,真实参数 θ 是未知或不确定的,因此可以表示成随机变量。
表明,这些对抗样本的主要原因之一是过度线性。神经网络主要是基于线性块构建的。因此在一些实验中,它们实现的整体函数被证明是高度线性的。这些线性函数很容易优化。不幸的是,如果一个线性函数具有许多输入,那么它的值可以非常迅速地改变。如果我们用 ϵ 改变每个输入,那么权重为w 的线性函数可以改变
Dropout启发其他以随机方法训练指数量级的共享权重的集成。DropConnect是Dropout的一个特殊情况,其中一个标量权重和单个隐藏单元状态之间的每个乘积被认为是可以丢弃的一个单元 (Wan et al., 2013)。随机池化是构造卷积神经网络集成的一种随机池化的形式 (见第 9.3 节
从上图中可以看到,信用卡余额相对于每月收入来说,对还款违约的影响更大。 一般模型不会直接预测某信用卡用户是否违约,而是预测其违约的概率,表示为`P(Default|Balance,Income)`,因为它的值在0和1之间,所以如果直接用类似线性回归模型的方式是不行的,需要对加权和进行变换。即: ![image
差较大的现象。欠拟合与过拟合的区别:欠拟合在训练集和测试集上的性能都较差,而过拟合往往能较好地学习训练集数据的性质,而在测试集上的性能较差。在神经网络训练的过程中,欠拟合主要表现为输出结果的高偏差,而过拟合主要表现为输出结果的高方差。机器学习的目标:是使学得的模型能够很好的适用于
Propagation)是神经网络中逐层计算参数梯度的方法。我早就已经开始看不懂了,这个图还没完。这个正向传播算法和反向传播算法干啥用的呢?我的理解是用来训练神经网络模型的。因为中间加了很多隐藏层,隐藏层也是需要将损失最小化的呀,所以需要引入这两个算法。神经网络的目的是建立输入层与输出层
移动端模型必须满足模型尺寸小、计算复杂度低、电池耗电量低、下发更新部署灵活等条件。模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加速可以从多个角度来优化。总体来看,个人认为主要分为三个层次:1
然后以这两个logistic模型的结果作为输入,建立一个logistic回归模型,这个模型用于判断观测点在两条直线中所处的位置。可以写代码实现上图所示的神经网络,代码忽略之。而代码运行的结果是预测全部正确。 这里展示第2组数据的各层的结果: 对照着看从输入层到隐藏层的两个logistic模型对应的决策边界:可以看到,隐藏层把(0
因为这个求和包含多达指数级的项,除非该模型的结构允许某种形式的简化,否则是不可能计算的。目前为止,无法得知深度神经网络是否允许某种可行的简化。相反,我们可以通过采样近似推断,即平均许多掩码的输出。即使是 10 − 20 个掩码就足以获得不错的表现。然而,一个更好的方法能不错地近似整个集成的预测,且
先要对自变量进行`标准化`,对因变量进行`中心化`。 标准化后所有自变量的均值是0,方差是1。中心化后因变量的均值是0。 这样做可以让梯步下降法的数值更加稳定,更容易找到合适的初始值和学习步长。 一个标准化的方法就是让数据的每一列减去该列的均值,然后除以该列的样本标准差($sd(x)$): ![image
的例子中,我们的算法对特定图像预测的结果为0,而0是给定的猫的标签,所以数字0就是我们的预测或输出。· 目标(target)或标签(label):图像实际标注的标签。· 损失值(loss value)或预测误差(prediction error):预测值与实际值之间的差距。数值越小,准确率越高。·
以下个人做的笔记,来源于DataCastle数据城堡作者DC君的竞赛经验。性能提升的力度按下方技术方案的顺序从上到下依次递减:1. 从数据上提升性能 a. 收集更多的数据 b. 产生更多的数据 c. 对数据做缩放 d. 对数据做变换 e. 特征选择 f. 重新定义问题2. 从算法上提升性能
传统的机器学习需要人工提取数据特征,而深度学习通过层次化的表示来完成特征的提取。层次化的表示是指用简单的表示逐步表达较复杂的表示。1. 如何理解简单和复杂的表示? 2. 这种所谓层次化的表示的理论依据是什么?
20227/31/1659239540190972017.png) 这个切线的斜率看上去不是0.35的样子啊,明显要更陡一下。这是因为x轴和y轴的比例不一致而导致的视觉效果,如果轴的比例之后显示是这样的,这样看上去就对了 ![image.png](https://bbs-img.huaweicloud
监督算法之间的区别没有规范,严格的定义,因为没有客观的判断来区分监督者提供的值是特征还是目标。通俗地说,无监督学习是指从不需要人为注释样本的分布中抽取信息的大多数尝试。该术语通常与密度估计相关,学习从分布中采样,学习从分布中去噪,需要数据分布的流形,或是将数据中相关的样本聚类。