已找到以下 10000 条记录
  • 浅谈深度学习

    首先要明白什么是深度学习深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络

    作者: 运气男孩
    1268
    3
  • 《MXNet深度学习实战》—1.1.3 深度学习

    1.1.3 深度学习在介绍深度学习之前首先需要了解下神经网络,神经网络是机器学习算法中的一个重要分支,通过叠加网络层模拟人类大脑对输入信号的特征提取,根据标签和损失函数的不同,既可以做分类任务,又可以做回归任务。我们知道在机器学习的大部分算法中,特征提取一般都是手动构造的,这部分

    作者: 华章计算机
    发表时间: 2019-06-16 16:21:27
    3404
    0
  • 导入和预处理训练数据集 - CodeArts IDE Online

    plt.show() 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理和机器学习。 机器学习是人工智能的一个子集,它使计算机在没有明确编程的情况下能够更好地完成

    作者: 建赟
    1845
    2
  • 什么是深度学习

    深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术和大规模分

    作者: OMAI
    6641
    0
  • 各个模型深度学习训练加速框架的选择 - AI开发平台ModelArts

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

  • 【mindSpore】【深度学习】求指路站内的深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习学习

    1%。主要问题是如何设置 ϵ0。若 ϵ0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用 Dropout 的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的代价值。通常,就

    作者: 小强鼓掌
    454
    2
  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:“对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量

    作者: 小强鼓掌
    944
    0
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 深度学习和层级结构

    语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • 深度学习学习算法

    机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”

    作者: 小强鼓掌
    736
    1
  • 基于深度学习的油藏地震属性自动提取方法

    量归一化、学习率调整和正则化等。 5. 地震属性自动提取实验 通过实际的地震数据集,展示基于深度学习的油藏地震属性自动提取方法的实验结果。包括对比传统方法和深度学习方法的性能表现,以及分析深度学习模型提取到的关键属性。 结论 总结基于深度学习的油藏地震属性自动提取方法的优势和应用前景,并对未来的研究方向进行展望。

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 20:05:23
    7
    0
  • 深度学习模型结构

    对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks

    作者: QGS
    644
    2
  • 深度学习深度前馈网络

           深度前馈网络 (deep feedforward network),也叫作前馈神经网络 (feedforward neural network) 或者多层感知机 (multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数

    作者: 小强鼓掌
    1256
    4
  • 深度学习模型结构

    对信息的处理是分级的。从低级的提取边缘特征到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks

    作者: 运气男孩
    1145
    2
  • 基于深度学习的油藏地质特征提取方法

    至关重要。传统方法中,地质特征提取通常依赖于人工解释和手动绘制剖面。然而,这种方法费时费力且容易受到主观因素的影响。随着深度学习的快速发展,基于深度学习的油藏地质特征提取方法逐渐成为一种有效的替代方案。 本文将介绍一种基于深度学习的油藏地质特征提取方法,并提供相应的代码示例。在这

    作者: 皮牙子抓饭
    发表时间: 2023-06-30 19:07:02
    6
    0
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1253
    2
  • 深度学习学习 XOR

    发挥作用的一个简单例子说起:学习 XOR 函数。       XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数

    作者: 小强鼓掌
    947
    3