已找到以下 10000 条记录
  • 深度学习之模型平均

    aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model avera

    作者: 小强鼓掌
    734
    2
  • 深度学习之长期依赖

    当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来

    作者: 小强鼓掌
    316
    2
  • 深度学习之代价函数

            深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是和其他的参数模型例如线性模型的代价函数相同的。       在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使

    作者: 小强鼓掌
    740
    2
  • 深度学习入门》笔记 - 20

    因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1

    作者: 黄生
    24
    1
  • 深度学习之噪声鲁棒性

    要用于循环神经网络 (Jim et al., 1996; Graves, 2011)。这可以被解释为关于权重的贝叶斯推断的随机实现。贝叶斯学习过程将权重视为不确定的,并且可以通过概率分布表示这种不确定性。向权重添加噪声是反映这种不确定性的一种实用的随机方法。

    作者: 小强鼓掌
    637
    1
  • 深度学习之任务 T

            机器学习可以让我们解决一些人为设计和实现固定程序很难解决的问题。从科学和哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。       如果考虑 “任务”比较正式的定义,那么学习的过程并不是任务。       在相对正式的

    作者: 小强鼓掌
    726
    2
  • 深度学习之正则化

    没有免费午餐定理暗示我们必须在特定任务上设计性能良好的机器学习算法。我们建立一组学习算法的偏好来达到这个要求。当这些偏好和我们希望算法解决的学习问题相吻合时,性能会更好。        至此,我们具体讨论修改学习算法的方法只有,通过增加或减少学习算法可选假设空间的函数来增加或减少模型的容量。

    作者: 小强鼓掌
    832
    3
  • 深度学习之maxout 单元

    {(i − 1)k + 1, . . . , ik}。这提供了一种方法来学习对输入 x 空间中多个方向响应的分段线性函数。maxout 单元可以学习具有多达 k 段的分段线性的凸函数。maxout 单元因此可以视为学习激活函数本身而不仅仅是单元之间的关系。使用足够大的 k,maxout

    作者: 小强鼓掌
    1103
    1
  • 深度学习之模板匹配

    1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量 (support

    作者: 小强鼓掌
    464
    1
  • 深度学习之对抗样本

    回归,由于它们被限制为线性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。

    作者: 小强鼓掌
    629
    3
  • 深度学习之贝叶斯统计

    的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”

    作者: 小强鼓掌
    618
    1
  • 深度学习之Dropout启发

    Bagging。然而,这种参数共享策略不一定要基于包括和排除。原则上,任何一种随机的修改都是可接受的。在实践中,我们必须选择让神经网络能够学习对抗的修改类型。在理想情况下,我们也应该使用可以快速近似推断的模型族。我们可以认为由向量 µ 参数化的任何形式的修改,是对 µ 所有可能的值训练

    作者: 小强鼓掌
    544
    1
  • 深度学习之验证集

    测试集可以用来估计学习过程完成之后的学习器的泛化误差。其重点在于测试样本不能以任何形式参与到模型的选择,包括设定超参数。基于这个原因,测试集中的样本不能用于验证集。因此,我们总是从训练数据中构建验证集。特别地,我们将训练数据分成两个不相交的子集。其中一个用于学习参数。另一个作为验

    作者: 小强鼓掌
    730
    1
  • 深度学习算法中的集成学习(Ensemble Learning)与深度学习的结合

    数据,深度学习可以从中学习到更加准确和鲁棒的模型。 适应复杂任务:深度学习模型可以适应各种复杂任务,包括计算机视觉、自然语言处理和语音识别等。 集成学习深度学习中的应用 集成学习可以与深度学习相结合,以提高深度学习算法的性能和鲁棒性。以下是一些常见的集成学习方法在深度学习中的应用:

    作者: 皮牙子抓饭
    发表时间: 2023-09-25 09:27:00
    61
    1
  • 浅谈深度学习模型压缩

    teacher-student模型是迁移学习的一种,迁移学习也就是将一个模型的性能迁移到另一个模型上,对于教师网络往往是一个更加复杂的网络,具有非常好的性能和泛化能力,可以用这个网络来作为一个soft target来指导另外一个更加简单的学生网络来学习,使得更加简单、参数运算量更少的学

    作者: QGS
    34
    1
  • 深度学习之批量算法

    机器学习算法和一般优化算法不同的一点是,机器学习算法的目标函数通常可以分解为训练样本上的求和。机器学习中的优化算法在计算参数的每一次更新时通常仅使用整个代价函数中一部分项来估计代价函数的期望值。另一个促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的

    作者: 小强鼓掌
    972
    3
  • 深度学习入门》笔记 - 11

    化`。 标准化后所有自变量的均值是0,方差是1。中心化后因变量的均值是0。 这样做可以让梯步下降法的数值更加稳定,更容易找到合适的初始值和学习步长。 一个标准化的方法就是让数据的每一列减去该列的均值,然后除以该列的样本标准差($sd(x)$): ![image.png](https://bbs-img

    作者: 黄生
    176
    2
  • 学习笔记-如何提升深度学习性能?

    特征选择 f. 重新定义问题2. 从算法上提升性能   a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能   a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标

    作者: RabbitCloud
    631
    1
  • 适合新手的深度学习综述(5)--深度神经网络

    在本节中,我们将简要地讨论深度神经网络 (DNN),以及它们最近的改进和突破。神经网络的功能与人脑相似。它们主要由神经元和连接组成。当我们说深度神经网络时,我们可以假设有相当多的隐藏层,可以用来从输入中提取特征和计算复杂的函数。Bengio(2009) 解释了深度结构的神经网络,如卷积神经网络

    作者: @Wu
    179
    1
  • 深度学习入门》笔记 - 10

    59535760107353372.png) 好了我们上面说的是最简单的情况,因为为了学习,是一个权重或叫参数w,一个自变量x,并且只有一个观测点(x,y)。 在实际情况中,一般就不仅仅是学习的那么简单的情况。 数据会包含多个自变量,多个权重,很多个观测点。 用 $L(w)=L(w_1

    作者: 黄生
    184
    1