已找到以下 10000 条记录
  • 深度学习入门》笔记 - 26

    欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待

    作者: 黄生
    48
    2
  • 深度学习入门》笔记 - 09

    继续线性回归模型,前面说了如何更新模型参数w,让预测值接近于真实值。现在我们来尝试迭代多次,看看效果。 从w=0开始 ```python #w初始值给0 x,y=0.5,0.8 w=0;lr=0.5 #lr学习率=0.5 pred=x*w loss=((pred-y)**2)/2

    作者: 黄生
    418
    3
  • 使用Python实现深度学习模型:智能心理健康评估

    使用Python实现深度学习模型 我们将使用Python的深度学习库Keras和TensorFlow来实现一个简单的深度学习模型,用于情感分析。

    作者: Echo_Wish
    发表时间: 2024-09-12 08:24:21
    115
    0
  • 使用Python实现深度学习模型:智能旅游路线规划

    为了实现智能旅游路线规划,我们可以使用深度学习模型来预测最佳路线。

    作者: Echo_Wish
    发表时间: 2024-09-20 08:23:08
    92
    0
  • 使用Python实现深度学习模型:智能宠物监控与管理

    为了实现智能宠物监控,我们需要训练一个深度学习模型来识别宠物的行为。

    作者: Echo_Wish
    发表时间: 2024-09-19 08:44:28
    68
    0
  • 使用Python实现深度学习模型:智能数据隐私保护

    随着数据隐私问题的日益严重,如何在深度学习模型中保护用户数据成为了一个重要的研究方向。本文将介绍如何使用Python实现一个深度学习模型,同时采用差分隐私技术来保护数据隐私。

    作者: Echo_Wish
    发表时间: 2024-09-29 15:26:25
    94
    0
  • 使用Python实现深度学习模型:智能广告创意生成

    随着人工智能技术的发展,深度学习在广告创意生成方面展现出了巨大的潜力。本文将介绍如何使用Python实现一个智能广告创意生成模型,详细讲解数据准备、模型构建和生成过程。

    作者: Echo_Wish
    发表时间: 2024-09-25 08:22:24
    117
    0
  • 深度学习之流形学习

          流形 (manifold) 指连接在一起的区域。数学上,它是指一组点,且每个点都有其邻域。给定一个任意的点,其流形局部看起来像是欧几里得空间。日常生活中,我们将地球视为二维平面,但实际上它是三维空间中的球状流形。      每个点周围邻域的定义暗示着存在变换能够从一个位置移动到其邻域位置

    作者: 小强鼓掌
    1675
    3
  • 机器学习与深度学习

    深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。

    作者: QGS
    678
    2
  • 分享深度学习笔记组件学习

    人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。

    作者: 初学者7000
    627
    1
  • 深度学习神经网络

        什么是神经网络    我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个文章中,我会说一些直观的基础知识。让我们从一个房价预测的例子开始说起。    假设你有一个数据集,它包含了六栋房子的信息。

    作者: 运气男孩
    656
    2
  • 深度学习之函数估计

    有时我们会关注函数估计(或函数近似)。这时我们试图从输入向量x 预测变量 y。我们假设有一个函数 f(x) 表示 y 和 x 之间的近似关系。例如,我们可能假设 y = f(x) + ϵ,其中 ϵ 是 y 中未能从 x 预测的一部分。在函数估计中,我们感兴趣的是用模型估计去近似 f

    作者: 小强鼓掌
    835
    1
  • 深度学习之快速 Dropout

    使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收敛速度

    作者: 小强鼓掌
    540
    1
  • 深度学习入门》笔记 - 20

    因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1

    作者: 黄生
    24
    1
  • 深度学习之快速 Dropout

    使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收敛速度

    作者: 小强鼓掌
    1197
    4
  • 深度学习入门》笔记 - 14

    在logistic模型中,损失函数可以定义为 ![image.png](https://bbs-img.huaweicloud.com/data/forums/attachment/forum/20228/6/1659777983871392224.png) 其中$p_{i}$表示第

    作者: 黄生
    59
    2
  • 深度学习入门》笔记 - 04

    然后就是Python的介绍。包括常见的数据类型,基本算术运算,比较和布尔运算,如何载入额外的模块和包。 基本数据结构有列表、元组、字典和集合。控制结构,内建函数和自定义函数。 然后介绍numpy库,他可以实现快速的算数运算,特别是矩阵运算,运算内部是通过C语言实现的,所以比较快。他包含两种基本数据类型

    作者: 黄生
    40
    1
  • 深度学习之聚类问题

    关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外,

    作者: 小强鼓掌
    535
    1
  • 深度学习之批量算法

    促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对梯度做出了非常相似的贡献

    作者: 小强鼓掌
    314
    1
  • 深度学习之灾难遗忘

    每个 maxout 单元现在由 k 个权重向量来参数化,而不仅仅是一个,所以 maxout单元通常比整流线性单元需要更多的正则化。如果训练集很大并且每个单元的块数保持很低的话,它们可以在没有正则化的情况下工作得不错 (Cai et al., 2013)。maxout 单元还有一些其他的优点

    作者: 小强鼓掌
    418
    0