检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
遇见你,遇见未来 华为云 | +智能,见未来 项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。
已完成绑定 【论文笔记】语音情感识别之手工特征深度学习方法 本文章主体基于PilgrimHui的论文笔记:《语音情感识别(三)手工特征+CRNN》,在原来基础上,补充了数据处理部分以及论文方法的一些细节,欢迎语音情感分析领域的同学一起讨论。 1.
12/21 00:00:00 将深度学习服务推理特性正式下线。
D-Plan AI 生态伙伴计划 D-Plan AI 生态伙伴计划 D-Plan AI 生态伙伴计划是围绕华为云一站式AI开发平台ModelArts推出的一项合作伙伴计划,旨在与合作伙伴一起构建合作共赢的AI生态体系,加速AI应用落地,华为云向伙伴提供培训、技术、营销和销售的全面支持
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。
) 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。
提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信息熵上限近似模型的树搜索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参
随着深度学习模型越来越大,所需数据量越来越多,所需的AI算力资源和训练时间越来越长,深度学习的训练和推理性能将是重中之重。
管理全周期AI工作流,助力千行百业智能升级 购买 控制台 文档 资源与工具 资源与工具 开发服务 海量资源助力开发者与华为云共建应用 开发工具 获取海量开发者技术资源、工具 开发者计划 使能开发者基于开放能力进行技术创新 开发支持 专业高效的开发者在线技术支持服务 开发者学堂 云上学习
基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型
同时,华为云一站式AI开发平台ModelArts已经商用,ModelArts是深度学习服务新一代架构版本支持更多的高级特性,不仅仅全部包含深度学习服务的功能,还支持数据管理、AI市场等诸多新功能,能力比深度学习服务更加强大,请使用ModelArts相关能力代替深度学习服务。
metrics=['accuracy']) # training model.fit(train_images, train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
简单介绍一下机器学习服务是什么
父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
华为HiLens 华为HiLens 华为HiLens为端云协同AI应用开发与运行管理平台,支持部署华为云ModelArts平台训练的模型,提供云上管理平台、丰富的技能市场和开发者工具与插件,帮助用户高效开发AI应用,并将其部署到多种端侧计算设备运行和在线管理。 华为HiLens为端云协同
父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型