内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习应用开发》学习笔记-14

    这里用的损失函数是采用均方差(Mean Square Error MES),还有一个是交叉熵(cross-entropy)这个tf都提供了方法,这样写:loss_function=tf.reduce_mean(tf.squre(y-pred))这里pred是一个节点,就是调用模型

    作者: 黄生
    626
    2
  • 深度学习应用开发》学习笔记-08

    从清华镜像下载python3的anaconda,然后安装anaconda,安装后,会用到他的prompt和jupyter notebook. 然后设置anaconda的源为清华镜像,安装tensorflow。可安装不带gpu的。教学够用了。这里版本是1.2. 安装好之后,做一个简

    作者: 黄生
    1134
    3
  • 深度学习应用开发》学习笔记-29

    房价的tf2版本,有一些变化。 1是直接使用sklearn.preprocessing里的scale来做归一化,更简单便捷 2不是一股脑将数据全用于训练,划分了分别用于训练、验证、测试的数据 3损失函数,优化器方面,代码有变化,头疼~ 4对训练数据没有做打散的操作 代码如下: 最

    作者: 黄生
    769
    3
  • 深度学习之半监督学习

    深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin

    作者: 小强鼓掌
    750
    10
  • AI——学习AI之NLP后对预训练语言模型——心得体会总结

    对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别、文本分类、文本相似度分析、问答系统、人脸检测。在这一个多月对NLP的处理流程,常用模型及原理进行了初步了解及理解,到目前还只是部分理解,不能全部吃透,感觉比前期图像领域的深度学习理论知

    作者: jimmybhb
    发表时间: 2019-10-11 11:50:26
    9945
    0
  • 机器学习深度学习的区别是什么?

    深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 机器学习深度学习的未来趋势

    机器学习深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1240
    2
  • 深度学习基本概念

    们发现从数据的原始形式直接学得数据表示这件事很难。深度学习是目前最成功的表示学习方法,因此,目前国际表示学习大会(ICLR)的绝大部分论文都是关于深度学习的。深度学习是把表示学习的任务划分成几个小目标,先从数据的原始形式中先学习比较低级的表示,再从低级表示学得比较高级的表示。这样

    作者: 运气男孩
    973
    4
  • 深度学习的现实应用

    语言翻译知之甚少的深度学习研究人员正提出相对简单的机器学习解决方案,来打败世界上最好的专家语言翻译系统。文本翻译可以在没有序列预处理的情况下进行,它允许算法学习文字与指向语言之间的关系。谷歌翻译利用的是大型递归神经网络的堆叠网络。四、自动驾驶汽车谷歌利用深度学习算法使自动驾驶汽车

    作者: 运气男孩
    832
    4
  • 深度学习的模型介绍

    深度神经网络:深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1762
    2
  • 深度学习的特点

    深度学习区别于传统的浅层学习深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,

    作者: QGS
    667
    2
  • 深度学习笔记之应用

          深度学习对语音识别产生了巨大影响。语音识别在 20 世纪 90 年代得到提高后,直到约 2000 年都停滞不前。深度学习的引入 (Dahl et al., 2010; Deng et al.,2010b; Seide et al., 2011; Hinton et al

    作者: 小强鼓掌
    624
    0
  • 深度学习之监督学习算法

    源自这样一个视角,教员或者老师提供目标 y 给机器学习系统,指导其应该做什么。在无监督学习中,没有教员或者老师,算法必须学会在没有指导的情况下让数据有意义。尽管无监督学习和监督学习并非完全没有交集的正式概念,它们确实有助于粗略分类我们研究机器学习算法时遇到的问题。传统地,人们将回归,分类

    作者: 小强鼓掌
    865
    2
  • 深度学习介绍

    学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 1.1.1 区别   1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层

    作者: Lansonli
    发表时间: 2021-09-28 15:18:45
    1023
    0
  • 深度学习和层级结构

    语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • 深度学习笔记之表示学习

    解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation learning)。学习到的表示往往比手动设计的表示表现得更好。并且它们只需最少的人工干预,就能让AI系统迅速适应新的任务。表示学习算法只需几分钟就可以为

    作者: 小强鼓掌
    856
    1
  • AI前沿——深度学习技术

    算法,人类终于找到了如何处理“抽象概念”这个亘古难题的方法。机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构市值不断改善自身的性能的学科,简单地说,机器学习就是通过算法,使得机器能从大量的历史数据中学习规律,从而对新的样本做智能

    作者: 运气男孩
    431
    2
  • 啥是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: freeborn0601
    9640
    3
  • 深度学习神经网络

    者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: 运气男孩
    673
    2
  • 深度学习入门》笔记 - 26

    欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待

    作者: 黄生
    49
    2