内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之超参数

    大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。所示的多项式回归实例中,有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 λ 是另一个

    作者: 小强鼓掌
    941
    2
  • 深度学习之任务T

    机器学习可以让我们解决一些人为设计和实现固定程序很难解决的问题。从科学和哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。如果考虑“任务”比较正式的定义,那么学习的过程并不是任务。在相对正式的 “任务”定义中,学习过程本身并不是任务。

    作者: 小强鼓掌
    823
    3
  • 深度学习神经网络

        什么是神经网络    我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个文章中,我会说一些直观的基础知识。让我们从一个房价预测的例子开始说起。    假设你有一个数据集,它包含了六栋房子的信息。所以,你

    作者: 运气男孩
    656
    2
  • 深度学习入门》笔记 - 14

    6253.png) 接下来实在是看不下去了,还有求偏导数的主要技巧用到了链式法则,还有其他的太难看了。所以这一小部分跳过。 接下来的内容是深度神经网络。 ![image.png](https://bbs-img.huaweicloud.com/data/forums/attach

    作者: 黄生
    60
    2
  • 深度学习之设计矩阵

    x(2), . . . , x(m)}。这种表示方式并非意味着样本向量 x(i) 和 x(j) 有相同的大小。在监督学习中,样本包含一个标签或目标和一组特征。例如,我们希望使用学习算法从照片中识别物体。我们需要明确哪些物体会出现在每张照片中。我们或许会用数字编码表示,如 0 表示人,1 表示车,2

    作者: 小强鼓掌
    1663
    1
  • 深度学习之函数估计

    可能具有过高的方差),k-折交叉验证算法可以用于估计学习算法 A 的泛化误差。数据集 D 包含的元素是抽象的样本 z(i) (对于第 i 个样本),在监督学习的情况代表(输入,目标)对 z(i) = (x(i), y(i)) ,或者无监督学习的情况下仅用于输入 z(i) = x(i)。该算法返回

    作者: 小强鼓掌
    836
    1
  • 深度学习笔记之贡献

            深度学习的另一个最大的成就是其在强化学习 (reinforcement learning) 领域的扩展。在强化学习中,一个自主的智能体必须在没有人类操作者指导的情况下,通过试错来学习执行任务。DeepMind 表明,基于深度学习的强化学习系统能够学会玩Atari 视频游戏,并在多种任务中可与人类匹敌

    作者: 小强鼓掌
    856
    2
  • 深度学习之历史小计

    1847)。从 20 世纪 40 年代开始,这些函数近似技术被用于导出诸如感知机的机器学习模型。然而,最早的模型都是基于线性模型。来自包括 Marvin Minsky 的批评指出了线性模型族的几个缺陷,例如它无法学习 XOR 函数,这导致了对整个神经网络方法的抵制。

    作者: 小强鼓掌
    414
    0
  • 深度学习的现实应用

    Transformers)模型,采用迁移学习和微调的方法,进一步刷新了深度学习方法在自然语言处理任务上的技术前沿。到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融

    作者: 角动量
    2054
    4
  • 深度学习之虚拟对抗

    性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么

    作者: 小强鼓掌
    679
    1
  • 分享深度学习未来发展的学习范式-——简化学习

        在深度学习领域, 特别是在NLP(深度学习领域研究最热潮激动人心的领域)中,模型的规模正在不断增长。最新的GPT-3模型有1750亿个参数。把它和BERT比较就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?    按理来说,不会,GPT-3是非常有说

    作者: 初学者7000
    1133
    1
  • 深度学习之正切传播

    为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不

    作者: 小强鼓掌
    345
    1
  • 深度学习之正切传播

    为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不

    作者: 小强鼓掌
    664
    1
  • Ubuntu深度学习环境配置

    Ubuntu深度学习环境配置安装组合:Anaconda+PyTorch(CPU版)或PyTorch(GPU版)开源贡献:陈信达,华北电力大学3.1 Anacond安装Anaconda和Python版本是对应的,所以需要选择安装对应Python2.7版本的还是Python3.7版本

    作者: @Wu
    665
    0
  • 深度学习之模型平均

    aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model avera

    作者: 小强鼓掌
    735
    2
  • 深度学习之长期依赖

    当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来

    作者: 小强鼓掌
    317
    2
  • 深度学习的特点

    深度学习区别于传统的浅层学习深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,

    作者: QGS
    594
    2
  • 深度学习笔记之特性

            深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千

    作者: 小强鼓掌
    930
    1
  • 深度学习入门》笔记 - 20

    因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1

    作者: 黄生
    25
    1
  • 深度学习之隐藏单元

    一种形式,而不是对输入原始值的破坏。例如,如果模型学得通过鼻检测脸的隐藏单元 hi,那么丢失 hi 对应于擦除图像中有鼻子的信息。模型必须学习另一种 hi,要么是鼻子存在的冗余编码,要么是脸部的另一特征,如嘴。传统的噪声注入技术,在输入端加非结构化的噪声不能够随机地从脸部图像中抹

    作者: 小强鼓掌
    833
    5