已找到以下 10000 条记录
  • 深度学习应用开发》学习笔记-13

    Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0

    作者: 黄生
    457
    0
  • 深度学习应用开发》学习笔记-30

    终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。

    作者: 黄生
    525
    0
  • AI、机器学习深度学习的关系

    作者: andyleung
    1558
    1
  • 深度学习应用开发》学习笔记-28

    这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的

    作者: 黄生
    837
    3
  • 深度学习应用开发》学习笔记-23

    从人的角度来看,12个特征比1个特征要复杂了很多, 但对计算机来说,无所谓。 在tf里,12元的线性回归方程的实现,比1元的线性方程的实现,代码上也只是多了一点点复杂度而已。 这就是计算机的优势。 只是最后训练的结果,为什么都是nan,像老师说的,脸都黑了哦~ 这次先到这里,请听下回分解~

    作者: 黄生
    1471
    4
  • 深度学习应用开发》学习笔记-20

    落了很长时间没学,捡起来继续。编号也忘了从哪里接上,就从20开始吧。 前面弄完了一元线性回归,现在是波士顿房价预测-多元线性回归。 数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等

    作者: 黄生
    934
    3
  • 《MXNet深度学习实战》—1.2 深度学习框架

    主要通过深度学习框架MXNet来介绍如何实战深度学习算法,该框架融合了命令式编程和符号式编程,在灵活和高效之间取得了非常好的平衡。正如前文所述,各深度学习框架之间有很多相似性,当你深入了解其中一种深度学习框架之后基本上就能举一反三,因此如果你现在还在犹豫学习哪个深度学习框架,那么

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 深度学习

    深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 深度学习应用开发》学习笔记-21

    说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```

    作者: 黄生
    1037
    2
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

    作者: 我的老天鹅
    1890
    10
  • 物联网学习入门

    物联网学习入门 课程学习,动手实验,技能认证,全面掌握物联网前沿技术 物联网知识图谱 在线课程 01 初学入门课程、开发者课程、合作伙伴课程 初学入门课程、开发者课程、合作伙伴课程 动手实验 02 精心设计云上实验,深度体验云服务 精心设计云上实验,深度体验云服务 初学入门 初学入门

  • 深度学习修炼(一)——从机器学习转向深度学习

    于颜料来说,各种深度学习框架已经提供了我们所需的各种颜料。我们要做的,就是利用不同的颜料,在空白的纸上,一笔一划画出我们所需的网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中的

    作者: ArimaMisaki
    发表时间: 2022-08-08 16:45:09
    244
    0
  • 深度学习应用开发》学习笔记-25

    那怎么做归一化呢,方法比较简单,就是 (特征值 - 特征值最小者)/(特征值最大值 - 特征值最小者) 这样归一化后的值,范围在 [0,1]之间。 标签值是不需要做归一化的哦 放一下有修改的代码,以及训练的结果: ```python #做归一化,对列index是0到11的特征值做归一化

    作者: 黄生
    857
    3
  • 深度学习应用开发》学习笔记-29

    房价的tf2版本,有一些变化。 1是直接使用sklearn.preprocessing里的scale来做归一化,更简单便捷 2不是一股脑将数据全用于训练,划分了分别用于训练、验证、测试的数据 3损失函数,优化器方面,代码有变化,头疼~ 4对训练数据没有做打散的操作 代码如下: 最

    作者: 黄生
    767
    3
  • 深度学习应用开发》学习笔记-08

    从清华镜像下载python3的anaconda,然后安装anaconda,安装后,会用到他的prompt和jupyter notebook. 然后设置anaconda的源为清华镜像,安装tensorflow。可安装不带gpu的。教学够用了。这里版本是1.2. 安装好之后,做一个简

    作者: 黄生
    1132
    3
  • 深度学习应用开发》学习笔记-14

    这里用的损失函数是采用均方差(Mean Square Error MES),还有一个是交叉熵(cross-entropy)这个tf都提供了方法,这样写:loss_function=tf.reduce_mean(tf.squre(y-pred))这里pred是一个节点,就是调用模型

    作者: 黄生
    626
    2
  • 自动学习

    具备AI开发能力。 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部

  • 深度学习之半监督学习

    深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin

    作者: 小强鼓掌
    749
    10
  • “智能基座”产教融合协同育人基地

    力。 通过课后实践、创新实践课等,把知识转化为动手能力。 学练考证一站式学习 一站式服务:课程学习、沙箱实验、考试认证。 一站式服务:课程学习、沙箱实验、考试认证。 精选课程 体系化的培训课程,快速完成学习覆盖,让您轻松上云 鲲鹏主题课程 昇腾主题课程 《数据库》课程方案 1 方案介绍

  • AI——学习AI之NLP后对预训练语言模型——心得体会总结

    对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别、文本分类、文本相似度分析、问答系统、人脸检测。在这一个多月对NLP的处理流程,常用模型及原理进行了初步了解及理解,到目前还只是部分理解,不能全部吃透,感觉比前期图像领域的深度学习理论知

    作者: jimmybhb
    发表时间: 2019-10-11 11:50:26
    9945
    0